Suppr超能文献

自动帖子评分:评估在线论坛中带有主题的帖子和引用的帖子。

Automated post scoring: evaluating posts with topics and quoted posts in online forum.

作者信息

Yang Ruosong, Cao Jiannong, Wen Zhiyuan, Shen Jiaxing

机构信息

The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

出版信息

World Wide Web. 2022;25(3):1197-1221. doi: 10.1007/s11280-022-01005-6. Epub 2022 Mar 10.

Abstract

Online forumpost evaluationis an effective way for instructors to assess students' knowledge understanding and writing mechanics. Manually evaluating massive posts costs a lot of time. Automatically grading online posts could significantly alleviate instructors' burden. Similar text assessment tasks like Automated Text Scoring evaluate the writing quality of independent texts or relevance between text and prompt. And Automatic Short Answer Grading measures the semantic matching of short answers according to given problems and correct answers. Different from existing tasks, we propose a novel task, Automated Post Scoring (APS), which grades all online discussion posts in each thread of each student with given topics and quoted posts. APS evaluates not only the writing quality of posts automatically but also the relevance to topics. To measure the relevance, we model the semantic consistency between posts and topics. Supporting arguments are also extracted from quoted posts to enhance posts evaluation. Specifically, we propose a mixture model including a hierarchical text model to measure the writing quality, a semantic matching model to model topic relevance, and a semantic representation model to integrate quoted posts. We also construct a new dataset called Online Discussion Dataset containing 2,542 online posts from 694 students of a social science course. The proposed models are evaluated on the dataset with correlation and residual based evaluation metrics. Compared with measuring posts alone, experimental results demonstrate that incorporating topics and quoted posts could improve the performance of APS by a large margin, more than 9 percent on QWK.

摘要

在线论坛帖子评估是教师评估学生知识理解和写作技巧的有效方式。手动评估大量帖子会耗费大量时间。自动给在线帖子评分可显著减轻教师的负担。类似的文本评估任务,如自动文本评分,评估独立文本的写作质量或文本与提示之间的相关性。而自动简答题评分则根据给定问题和正确答案来衡量简答题的语义匹配度。与现有任务不同,我们提出了一种新颖的任务——自动帖子评分(APS),它根据给定主题和引用帖子对每个学生每个线程中的所有在线讨论帖子进行评分。APS不仅能自动评估帖子的写作质量,还能评估与主题的相关性。为了衡量相关性,我们对帖子和主题之间的语义一致性进行建模。还从引用帖子中提取支持性论据以增强帖子评估。具体而言,我们提出了一个混合模型,包括一个用于衡量写作质量的分层文本模型、一个用于对主题相关性进行建模的语义匹配模型以及一个用于整合引用帖子的语义表示模型。我们还构建了一个名为在线讨论数据集的新数据集,其中包含来自一门社会科学课程的694名学生的2542条在线帖子。所提出的模型在该数据集上使用基于相关性和残差的评估指标进行评估。与仅衡量帖子相比,实验结果表明纳入主题和引用帖子可大幅提高APS的性能,在QWK指标上提高超过9%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/968a/8907391/150a117352da/11280_2022_1005_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验