Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, Minhang, China.
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, Xuhui, China.
Autophagy. 2022 Nov;18(11):2656-2670. doi: 10.1080/15548627.2022.2046449. Epub 2022 Mar 15.
Macroautophagy/autophagy is a finely-regulated process in which cytoplasm encapsulated within transient organelles termed autophagosomes is delivered to lysosomes or vacuoles for degradation. Phospholipids, particularly phosphatidic acid (PA) that functions as a second messenger, play crucial and differential roles in autophagosome formation; however, the underlying mechanism remains largely unknown. Here we demonstrated that PA inhibits autophagy through competitive inhibition of the formation of ATG3 (autophagy-related)-ATG8e and ATG6-VPS34 (vacuolar protein sorting 34) complexes. PA bound to GAPC (glyceraldehyde-3-phosphate dehydrogenase) or PGK (phosphoglycerate kinase) and promoted their interaction with ATG3 or ATG6, which further attenuated the interactions of ATG3-ATG8e or ATG6-VPS34, respectively. Structural and mutational analyses revealed the mechanism of PA binding with GAPCs and PGK3, and that GAPCs or ATG8e competitively interacted with ATG3, and PGK3 or VPS34 competitively interacted with ATG6, at the same binding interface. These results elucidate the molecular mechanism of how PA inhibits autophagy through binding GAPC or PGK3 proteins and expand the understanding of the functional mode of PA, demonstrating the importance of phospholipids in plant autophagy and providing a new perspective for autophagy regulation by phospholipids. ATG: autophagy-related; BiFC: bimolecular fluorescence complementation; co-IP: co-immunoprecipitation; Con A: concanamycin A; ER: endoplasmic reticulum; EZ: elongation zone; FRET-FLIM: fluorescence resonance energy transfer with fluorescence lifetime imaging microscopy; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GST: glutathione S-transferase; MDC: monodansylcadaverine; MZ: meristem zone; PA: phosphatidic acid; PAS: phagophore assembly site; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PGK3: phosphoglycerate kinase; PtdIns3K: phosphatidylinositol 3-kinase; PLD: phospholipase D; TEM: transmission electron microscopy; TOR: target of rapamycin; VPS34: vacuolar protein sorting 34; WT: wild type; Y2H: yeast two-hybrid.
自噬是一个高度调控的过程,其中细胞质被包裹在称为自噬体的瞬时细胞器中,并被递送至溶酶体或液泡进行降解。磷脂,特别是作为第二信使的磷脂酸(PA),在自噬体形成中发挥着关键和不同的作用;然而,其潜在机制在很大程度上仍是未知的。在这里,我们证明了 PA 通过竞争性抑制 ATG3(自噬相关)-ATG8e 和 ATG6-VPS34(液泡蛋白分选 34)复合物的形成来抑制自噬。PA 与 GAPC(甘油醛-3-磷酸脱氢酶)或 PGK(磷酸甘油酸激酶)结合,并促进它们与 ATG3 或 ATG6 的相互作用,这分别进一步减弱了 ATG3-ATG8e 或 ATG6-VPS34 的相互作用。结构和突变分析揭示了 PA 与 GAPCs 和 PGK3 的结合机制,以及 GAPCs 或 ATG8e 竞争性地与 ATG3 相互作用,PGK3 或 VPS34 竞争性地与 ATG6 相互作用,均在同一结合界面上。这些结果阐明了 PA 通过结合 GAPC 或 PGK3 蛋白抑制自噬的分子机制,并扩展了对 PA 功能模式的理解,证明了磷脂在植物自噬中的重要性,并为磷脂对自噬的调节提供了新的视角。ATG:自噬相关;BiFC:双分子荧光互补;co-IP:免疫共沉淀;Con A:康纳霉素 A;ER:内质网;EZ:伸长区;FRET-FLIM:荧光共振能量转移与荧光寿命成像显微镜;GAPDH:甘油醛-3-磷酸脱氢酶;GST:谷胱甘肽 S-转移酶;MDC:单丹磺酰尸胺;MZ:分生组织区;PA:磷脂酸;PAS:吞噬体组装位点;PC:磷脂酰胆碱;PE:磷脂酰乙醇胺;PGK3:磷酸甘油酸激酶;PtdIns3K:磷脂酰肌醇 3-激酶;PLD:磷脂酶 D;TEM:透射电子显微镜;TOR:雷帕霉素靶蛋白;VPS34:液泡蛋白分选 34;WT:野生型;Y2H:酵母双杂交。