Suppr超能文献

利用非格状子图为医学系统命名法(SNOMED CT)的新概念提供建议。

Leveraging non-lattice subgraphs for suggestion of new concepts for SNOMED CT.

作者信息

Hao Xubing, Abeysinghe Rashmie, Zheng Fengbo, Cui Licong

机构信息

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

出版信息

Proceedings (IEEE Int Conf Bioinformatics Biomed). 2021 Dec;2021:1805-1812. doi: 10.1109/bibm52615.2021.9669407.

Abstract

Missing hierarchical relations and missing concepts are common quality issues in biomedical ontologies. Non-lattice subgraphs have been extensively studied for automatically identifying missing relations in biomedical ontologies like SNOMED CT. However, little is known about non-lattice subgraphs' capability to uncover new or missing concepts in biomedical ontologies. In this work, we investigate a lexical-based intersection approach based on non-lattice subgraphs to identify potential missing concepts in SNOMED CT. We first construct lexical features of concepts using their fully specified names. Then we generate hierarchically unrelated concept pairs in non-lattice subgraphs as the candidates to derive new concepts. For each candidate pair of concepts, we conduct an order-preserving intersection based on the two concepts' lexical features, with the intersection result serving as the potential new concept name suggested. We further perform automatic validation through terminologies in the Unified Medical Language System (UMLS) and literature in PubMed. Applying this approach to the March 2021 release of SNOMED CT US Edition, we obtained 7,702 potential missing concepts, among which 1,288 were validated through UMLS and 1,309 were validated through PubMed. The results showed that non-lattice subgraphs have the potential to facilitate suggestion of new concepts for SNOMED CT.

摘要

层次关系缺失和概念缺失是生物医学本体中常见的质量问题。非格状子图已被广泛研究,用于自动识别生物医学本体(如SNOMED CT)中缺失的关系。然而,关于非格状子图在揭示生物医学本体中的新概念或缺失概念方面的能力,人们了解甚少。在这项工作中,我们研究了一种基于非格状子图的基于词汇的交集方法,以识别SNOMED CT中潜在的缺失概念。我们首先使用概念的完全指定名称构建概念的词汇特征。然后,我们在非格状子图中生成层次无关的概念对,作为推导新概念的候选对。对于每一对候选概念,我们基于这两个概念的词汇特征进行保序交集,交集结果作为建议的潜在新概念名称。我们进一步通过统一医学语言系统(UMLS)中的术语和PubMed中的文献进行自动验证。将这种方法应用于2021年3月发布的SNOMED CT美国版,我们获得了7702个潜在的缺失概念,其中1288个通过UMLS得到验证,1309个通过PubMed得到验证。结果表明,非格状子图有潜力为SNOMED CT促进新概念的建议。

相似文献

1
Leveraging non-lattice subgraphs for suggestion of new concepts for SNOMED CT.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2021 Dec;2021:1805-1812. doi: 10.1109/bibm52615.2021.9669407.
2
Auditing SNOMED CT hierarchical relations based on lexical features of concepts in non-lattice subgraphs.
J Biomed Inform. 2018 Feb;78:177-184. doi: 10.1016/j.jbi.2017.12.010. Epub 2017 Dec 20.
3
A substring replacement approach for identifying missing IS-A relations in SNOMED CT.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:2611-2618. doi: 10.1109/bibm55620.2022.9995595. Epub 2023 Jan 2.
4
Logical definition-based identification of potential missing concepts in SNOMED CT.
BMC Med Inform Decis Mak. 2023 May 9;23(Suppl 1):87. doi: 10.1186/s12911-023-02183-7.
5
Mining non-lattice subgraphs for detecting missing hierarchical relations and concepts in SNOMED CT.
J Am Med Inform Assoc. 2017 Jul 1;24(4):788-798. doi: 10.1093/jamia/ocw175.
6
Identification of missing concepts in biomedical terminologies using sequence-based formal concept analysis.
BMC Med Inform Decis Mak. 2021 Nov 9;21(Suppl 7):234. doi: 10.1186/s12911-021-01592-w.
8
A deep learning approach to identify missing is-a relations in SNOMED CT.
J Am Med Inform Assoc. 2023 Feb 16;30(3):475-484. doi: 10.1093/jamia/ocac248.
10

引用本文的文献

1
A GCN-based approach to uncover misaligned synonymous terms in the UMLS Metathesaurus.
AMIA Annu Symp Proc. 2024 Jan 11;2023:977-986. eCollection 2023.
2
Logical definition-based identification of potential missing concepts in SNOMED CT.
BMC Med Inform Decis Mak. 2023 May 9;23(Suppl 1):87. doi: 10.1186/s12911-023-02183-7.
3
Automated Identification of Missing IS-A Relations in the Human Phenotype Ontology.
AMIA Annu Symp Proc. 2023 Apr 29;2022:785-794. eCollection 2022.
4
Identifying Missing IS-A Relations in Orphanet Rare Disease Ontology.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2022 Dec;2022:3274-3279. doi: 10.1109/bibm55620.2022.9995614. Epub 2023 Jan 2.
5
Identification of missing hierarchical relations in the vaccine ontology using acquired term pairs.
J Biomed Semantics. 2022 Aug 13;13(1):22. doi: 10.1186/s13326-022-00276-2.

本文引用的文献

1
Identification of missing concepts in biomedical terminologies using sequence-based formal concept analysis.
BMC Med Inform Decis Mak. 2021 Nov 9;21(Suppl 7):234. doi: 10.1186/s12911-021-01592-w.
2
A Lexical-based Formal Concept Analysis Method to Identify Missing Concepts in the NCI Thesaurus.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2020 Dec;2020. doi: 10.1109/bibm49941.2020.9313186. Epub 2021 Jan 13.
4
Perichondritis: Not All Ear Pain Is Otitis.
Cureus. 2020 Oct 24;12(10):e11141. doi: 10.7759/cureus.11141.
5
Recurrent auricular inflammation caused by Kimura's disease: reminiscent of the early phase of relapsing polychondritis?
Oxf Med Case Reports. 2019 Sep 28;2019(9):omz091. doi: 10.1093/omcr/omz091. eCollection 2019 Sep.
6
Acute Auricular Perichondritis With an Effusion.
Clin Pract Cases Emerg Med. 2019 Oct 21;3(4):453-454. doi: 10.5811/cpcem.2019.9.43947. eCollection 2019 Nov.
7
Osteoarthritis: Clinical and Radiological Correlation.
J Assoc Physicians India. 2018 Jul;66(7):37-39.
9
Endovascular Therapy for Rheumatic Mitral and Aortic Valve Disease: Review Article.
Curr Treat Options Cardiovasc Med. 2018 Jun 22;20(7):59. doi: 10.1007/s11936-018-0647-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验