Zhang Yuying, Zhang Zhonghuan, Ren Meifeng, Liu Xiangying, Zhou Xuguo, Yang Jing
College of Plant Protection, Hunan Agricultural University, Changsha, China.
College of Plant Protection, Shanxi Agricultural University, Taiyuan, China.
J Econ Entomol. 2022 Apr 13;115(2):662-670. doi: 10.1093/jee/toac019.
Hawthorn spider mite, Amphitetranychus viennensis Zacher, one of the most damaging arthropod pests for Rosaceaous fruit trees and ornamentals, has developed resistance to most of the commercially available acaricides. To understand the molecular basis of acaricide resistance, a standardized protocol for real-time quantitative reverse transcription PCR (RT-qPCR) following the MIQE (minimum information for publication of quantitative real time PCR experiments) guidelines is needed. In this study, we screened for the internal references in A. viennensis to study in acaricide resistance. In total, 10 candidate reference genes, including EF1A, 28S rRNA, 18S rRNA, α-tubulin, Actin3, RPS9, GAPDH, V-ATPase B, RPL13, and V-ATPase A, were assessed under the treatments of four commonly used acaricides with distinct mode-of-actions (MOAs). Based on the Insecticide Resistance Action Committee MOA classification, avermectin, bifenazate, spirodiclofen, and fenpropathrin belong to group 6, 20D, 23, and 3A, respectively. The expression profiles of these candidate genes were evaluated using geNorm, Normfinder, BestKeeper, and ∆Ct methods, respectively. Eventually, different sets of reference genes were recommended for each acaricide according to RefFinder, a comprehensive platform integrating all four above-mentioned algorithms. Specifically, the top three recommendations were 1) 28S, V-ATPase A, and Actin 3 for avermectin, 2) GAPDH, RPS9, and 28S for bifenazate, 3) Actin 3, V-ATPase B, and α-tubulin for spirodiclofen, and 4) Actin 3, α-tubulin, and V-ATPase A for fenpropathrin. Although unique sets of genes are proposed for each acaricide, α-tubulin, EF1A, and GAPDH are the most consistently stably expressed reference genes when A. viennensis was challenged chemically. Our findings lay the foundation for the study of acaricide resistance in the phytophagous mites in general, and in the hawthorn spider mite, A. viennensis, in particular.
山楂叶螨(Amphitetranychus viennensis Zacher)是蔷薇科果树和观赏植物中最具危害性的节肢动物害虫之一,已对大多数市售杀螨剂产生了抗性。为了解杀螨剂抗性的分子基础,需要一个遵循MIQE(实时定量PCR实验发表的最低信息要求)指南的实时定量逆转录PCR(RT-qPCR)标准化方案。在本研究中,我们筛选了山楂叶螨的内参基因,以用于杀螨剂抗性研究。总共评估了10个候选内参基因,包括EF1A、28S rRNA、18S rRNA、α-微管蛋白、肌动蛋白3、核糖体蛋白S9(RPS9)、甘油醛-3-磷酸脱氢酶(GAPDH)、V-ATP酶B、核糖体蛋白L13(RPL13)和V-ATP酶A,这些基因在四种具有不同作用模式(MOA)的常用杀螨剂处理下进行评估。根据杀虫剂抗性行动委员会的作用模式分类,阿维菌素、联苯肼酯、螺螨酯和甲氰菊酯分别属于第6组、20D组、23组和3A组。分别使用geNorm、Normfinder、BestKeeper和∆Ct方法评估这些候选基因的表达谱。最终,根据RefFinder(一个整合上述四种算法的综合平台)为每种杀螨剂推荐了不同的内参基因组合。具体而言,排名前三的推荐组合为:1)阿维菌素处理下的28S、V-ATP酶A和肌动蛋白3;2)联苯肼酯处理下的GAPDH、RPS9和28S;3)螺螨酯处理下的肌动蛋白3、V-ATP酶B和α-微管蛋白;4)甲氰菊酯处理下的肌动蛋白3、α-微管蛋白和V-ATP酶A。虽然针对每种杀螨剂提出了独特的基因组合,但当山楂叶螨受到化学刺激时,α-微管蛋白、EF1A和GAPDH是最稳定表达的内参基因。我们的研究结果为一般植食性螨类,特别是山楂叶螨的杀螨剂抗性研究奠定了基础。