Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
Nat Commun. 2022 Mar 18;13(1):1488. doi: 10.1038/s41467-022-29179-7.
Medical ultrasound and optoacoustic (photoacoustic) imaging commonly rely on the concepts of beam-forming and tomography for image formation, enabled by piezoelectric array transducers whose element size is comparable to the desired resolution. However, the tomographic measurement of acoustic signals becomes increasingly impractical for resolutions beyond 100 µm due to the reduced efficiency of piezoelectric elements upon miniaturization. For higher resolutions, a microscopy approach is preferred, in which a single focused ultrasound transducer images the object point-by-point, but the bulky apparatus and long acquisition time of this approach limit clinical applications. In this work, we demonstrate a miniaturized acoustic detector capable of tomographic imaging with spread functions whose width is below 20 µm. The detector is based on an optical resonator fabricated in a silicon-photonics platform coated by a sensitivity-enhancing elastomer, which also effectively eliminates the parasitic effect of surface acoustic waves. The detector is demonstrated in vivo in high-resolution optoacoustic tomography.
医学超声和光声(光声)成像是通过基于压电阵列换能器的波束形成和层析成像技术来实现的,这些换能器的元件尺寸与所需的分辨率相当。然而,由于在小型化过程中压电元件的效率降低,对于超过 100µm 的分辨率,声信号的层析测量变得越来越不切实际。对于更高的分辨率,更倾向于采用显微镜方法,其中单个聚焦超声换能器逐点对物体进行成像,但这种方法的庞大仪器和较长的采集时间限制了其临床应用。在这项工作中,我们展示了一种小型化的声学探测器,该探测器能够进行层析成像,其扩散函数的宽度低于 20µm。该探测器基于在涂有增强灵敏度的弹性体的硅光子学平台上制造的光学谐振器,该弹性体还可以有效地消除表面声波的寄生效应。该探测器在高分辨率光声层析成像中进行了体内演示。