Hinamoto Tatsuki, Lee Yea-Shine, Dereshgi Sina Abedini, DiStefano Jennifer G, Dos Reis Roberto, Sugimoto Hiroshi, Aydin Koray, Fujii Minoru, Dravid Vinayak P
Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai Nada, Kobe, 657-8501, Japan.
Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
Small. 2022 Apr;18(17):e2200413. doi: 10.1002/smll.202200413. Epub 2022 Mar 19.
Heterostructures of transition metal dichalcogenides and optical cavities that can couple to each other are rising candidates for advanced quantum optics and electronics. This is due to their enhanced light-matter interactions in the visible to near-infrared range. Core-shell structures are particularly valuable for their maximized interfacial area. Here, the chemical vapor deposition synthesis of Si@MoS core-shells and extensive structural characterization are presented. Compared with traditional plasmonic cores, the silicon dielectric Mie resonator core offers low Ohmic losses and a wider spectrum of optical modes. The magnetic dipole (MD) mode of the silicon core efficiently couples with MoS through its large tangential component at the core surface. Using transmission electron microscopy and correlative single-particle scattering spectroscopy, MD mode splitting is experimentally demonstrated in this unique Si@MoS core-shell structure. This is evidence for resonance coupling, which is limited to theoretical proposals in this particular system. A coupling constant of 39 meV is achieved, which is ≈1.5-fold higher than previous reports of particle-on-film geometries with a smaller interfacial area. Finally, higher-order systems with the potential to tune properties are demonstrated through a dimer system of Si@MoS , forming the basis for emerging architectures for optoelectronic and nanophotonic applications.
过渡金属二硫属化物与能够相互耦合的光学腔的异质结构,正成为先进量子光学和电子学领域备受关注的候选材料。这归因于它们在可见光到近红外范围内增强的光与物质相互作用。核壳结构因其最大化的界面面积而格外有价值。在此,展示了Si@MoS核壳结构的化学气相沉积合成及广泛的结构表征。与传统的等离子体核相比,硅介电米氏谐振器核具有低欧姆损耗和更宽的光学模式光谱。硅核的磁偶极(MD)模式通过其在核表面的大切向分量与MoS有效耦合。利用透射电子显微镜和相关的单粒子散射光谱,在这种独特的Si@MoS核壳结构中通过实验证明了MD模式分裂。这是共振耦合的证据,而在这个特定系统中此前仅限于理论推测。实现了39毫电子伏特的耦合常数,比之前报道的具有较小界面面积的膜上粒子几何结构高出约1.5倍。最后,通过Si@MoS的二聚体系统展示了具有调节特性潜力的高阶系统,为光电子和纳米光子应用的新兴架构奠定了基础。