Suppr超能文献

基于网络的反应模块,由基因表达生物标志物组成,可预测溃疡性结肠炎在治疗开始时对英夫利昔单抗的反应。

Network-based response module comprised of gene expression biomarkers predicts response to infliximab at treatment initiation in ulcerative colitis.

机构信息

Scipher Medicine Corporation, Waltham MA.

Center for Research and Interdisciplinarity (CRI), University Paris Descartes, Paris, France.

出版信息

Transl Res. 2022 Aug;246:78-86. doi: 10.1016/j.trsl.2022.03.006. Epub 2022 Mar 16.

Abstract

This cross-cohort study aimed to (1) determine a network-based molecular signature that predicts the likelihood of inadequate response to the tumor necrosis factor-ɑ inhibitor (TNFi) therapy, infliximab, in ulcerative colitis (UC) patients, and (2) address biomarker irreproducibility across different cohort studies. Whole-transcriptome microarray data were derived from biopsies of affected colon tissue from 2 cohorts of infliximab-treated UC patients (training N = 24 and validation N = 22). Response was defined as endoscopic and histologic healing at 4-6 weeks and 8 weeks, respectively. From the training cohort, genes with RNA expression that significantly correlated with clinical response outcomes were mapped onto the Human Interactome network map of protein-protein interactions to identify a largest connected component (LCC) of proteins indicative of infliximab response status in UC. Expression levels of transcripts within the LCC were fed into a probabilistic neural network model to generate a classifier that predicts inadequate response to infliximab. A classifier predictive of inadequate response to infliximab was generated and tested in a cross-cohort, blinded fashion; the AUC was 0.83 and inadequate response was predicted with a 100% positive predictive value and 64% sensitivity. Genes separately identified from the 2 cohorts that correlated with response to infliximab appeared distinct but mapped onto the same network region of the Human Interactome, reflecting a common underlying biology of response among UC patients. Cross-cohort validation of a classifier predictive of infliximab response status in UC patients indicates that a molecular signature of non-response to TNFi therapies is present in patients' baseline gene expression data. The goal is to develop a diagnostic test that predicts which patients will have an inadequate response to targeted therapies and define new targets and pathways for therapeutic development.

摘要

本跨队列研究旨在

(1) 确定一种基于网络的分子特征,预测肿瘤坏死因子-α 抑制剂(TNFi)治疗溃疡性结肠炎(UC)患者时反应不足的可能性,该抑制剂为英夫利昔单抗;(2) 解决不同队列研究中生物标志物不可重现的问题。从接受英夫利昔单抗治疗的 UC 患者的病变结肠组织活检中获取全转录组微阵列数据(训练队列 N=24,验证队列 N=22)。分别在 4-6 周和 8 周时,将内镜和组织学缓解定义为反应。从训练队列中,将与临床反应结果显著相关的 RNA 表达基因映射到蛋白质-蛋白质相互作用的人类互作网络图谱上,以确定反映 UC 中英夫利昔单抗反应状态的最大连通组件(LCC)中的蛋白质。将 LCC 内转录本的表达水平输入概率神经网络模型,生成一个预测英夫利昔单抗反应不足的分类器。以交叉队列、盲法的方式生成并测试预测英夫利昔单抗反应不足的分类器;AUC 为 0.83,对英夫利昔单抗反应不足的预测具有 100%的阳性预测值和 64%的灵敏度。从两个队列中分别鉴定出与英夫利昔单抗反应相关的基因似乎不同,但映射到人类互作网络的同一区域,反映出 UC 患者的反应具有共同的潜在生物学机制。UC 患者预测英夫利昔单抗反应状态的分类器的跨队列验证表明,TNFi 治疗反应不足的分子特征存在于患者的基线基因表达数据中。目标是开发一种诊断测试,预测哪些患者对靶向治疗反应不足,并定义新的治疗靶点和途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验