文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于网络的反应模块,由基因表达生物标志物组成,可预测溃疡性结肠炎在治疗开始时对英夫利昔单抗的反应。

Network-based response module comprised of gene expression biomarkers predicts response to infliximab at treatment initiation in ulcerative colitis.

机构信息

Scipher Medicine Corporation, Waltham MA.

Center for Research and Interdisciplinarity (CRI), University Paris Descartes, Paris, France.

出版信息

Transl Res. 2022 Aug;246:78-86. doi: 10.1016/j.trsl.2022.03.006. Epub 2022 Mar 16.


DOI:10.1016/j.trsl.2022.03.006
PMID:35306220
Abstract

This cross-cohort study aimed to (1) determine a network-based molecular signature that predicts the likelihood of inadequate response to the tumor necrosis factor-ɑ inhibitor (TNFi) therapy, infliximab, in ulcerative colitis (UC) patients, and (2) address biomarker irreproducibility across different cohort studies. Whole-transcriptome microarray data were derived from biopsies of affected colon tissue from 2 cohorts of infliximab-treated UC patients (training N = 24 and validation N = 22). Response was defined as endoscopic and histologic healing at 4-6 weeks and 8 weeks, respectively. From the training cohort, genes with RNA expression that significantly correlated with clinical response outcomes were mapped onto the Human Interactome network map of protein-protein interactions to identify a largest connected component (LCC) of proteins indicative of infliximab response status in UC. Expression levels of transcripts within the LCC were fed into a probabilistic neural network model to generate a classifier that predicts inadequate response to infliximab. A classifier predictive of inadequate response to infliximab was generated and tested in a cross-cohort, blinded fashion; the AUC was 0.83 and inadequate response was predicted with a 100% positive predictive value and 64% sensitivity. Genes separately identified from the 2 cohorts that correlated with response to infliximab appeared distinct but mapped onto the same network region of the Human Interactome, reflecting a common underlying biology of response among UC patients. Cross-cohort validation of a classifier predictive of infliximab response status in UC patients indicates that a molecular signature of non-response to TNFi therapies is present in patients' baseline gene expression data. The goal is to develop a diagnostic test that predicts which patients will have an inadequate response to targeted therapies and define new targets and pathways for therapeutic development.

摘要

本跨队列研究旨在:(1) 确定一种基于网络的分子特征,预测肿瘤坏死因子-α 抑制剂(TNFi)治疗溃疡性结肠炎(UC)患者时反应不足的可能性,该抑制剂为英夫利昔单抗;(2) 解决不同队列研究中生物标志物不可重现的问题。从接受英夫利昔单抗治疗的 UC 患者的病变结肠组织活检中获取全转录组微阵列数据(训练队列 N=24,验证队列 N=22)。分别在 4-6 周和 8 周时,将内镜和组织学缓解定义为反应。从训练队列中,将与临床反应结果显著相关的 RNA 表达基因映射到蛋白质-蛋白质相互作用的人类互作网络图谱上,以确定反映 UC 中英夫利昔单抗反应状态的最大连通组件(LCC)中的蛋白质。将 LCC 内转录本的表达水平输入概率神经网络模型,生成一个预测英夫利昔单抗反应不足的分类器。以交叉队列、盲法的方式生成并测试预测英夫利昔单抗反应不足的分类器;AUC 为 0.83,对英夫利昔单抗反应不足的预测具有 100%的阳性预测值和 64%的灵敏度。从两个队列中分别鉴定出与英夫利昔单抗反应相关的基因似乎不同,但映射到人类互作网络的同一区域,反映出 UC 患者的反应具有共同的潜在生物学机制。UC 患者预测英夫利昔单抗反应状态的分类器的跨队列验证表明,TNFi 治疗反应不足的分子特征存在于患者的基线基因表达数据中。目标是开发一种诊断测试,预测哪些患者对靶向治疗反应不足,并定义新的治疗靶点和途径。

相似文献

[1]
Network-based response module comprised of gene expression biomarkers predicts response to infliximab at treatment initiation in ulcerative colitis.

Transl Res. 2022-8

[2]
Genes associated with intestinal permeability in ulcerative colitis: changes in expression following infliximab therapy.

Inflamm Bowel Dis. 2012-1-4

[3]
Molecular patterns in human ulcerative colitis and correlation with response to infliximab.

Inflamm Bowel Dis. 2014-12

[4]
Focusing on non-responders to infliximab with ulcerative colitis, what can we do first and next?

Int Immunopharmacol. 2024-11-15

[5]
Construction of a molecular inflammatory predictive model with histone modification-related genes and identification of CAMK2D as a potential response signature to infliximab in ulcerative colitis.

Front Immunol. 2024-1-11

[6]
Generalized Pyoderma Gangrenosum Associated with Ulcerative Colitis: Successful Treatment with Infliximab and Azathioprine.

Acta Dermatovenerol Croat. 2016-4

[7]
Gene Expression Signature for Prediction of Golimumab Response in a Phase 2a Open-Label Trial of Patients With Ulcerative Colitis.

Gastroenterology. 2018-7-4

[8]
A Molecular Signature Response Classifier to Predict Inadequate Response to Tumor Necrosis Factor-α Inhibitors: The NETWORK-004 Prospective Observational Study.

Rheumatol Ther. 2021-9

[9]
The impact of biological interventions for ulcerative colitis on health-related quality of life.

Cochrane Database Syst Rev. 2015-9-22

[10]
Artificial Neural Network Analysis-Based Immune-Related Signatures of Primary Non-Response to Infliximab in Patients With Ulcerative Colitis.

Front Immunol. 2021

引用本文的文献

[1]
Artificial intelligence use for precision medicine in inflammatory bowel disease: a systematic review.

Am J Transl Res. 2025-1-15

[2]
Predictive, preventive and personalised approach as a conceptual and technological innovation in primary and secondary care of inflammatory bowel disease benefiting affected individuals and populations.

EPMA J. 2024-2-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索