Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (J.B., Z.M.A.-M., N.C., A.-M.V., A.T., S.A., A.R.-H., B.A.) Simcyp Division, Certara, Sheffield, United Kingdom (A.R.-H.) and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.).
Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom (J.B., Z.M.A.-M., N.C., A.-M.V., A.T., S.A., A.R.-H., B.A.) Simcyp Division, Certara, Sheffield, United Kingdom (A.R.-H.) and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
Drug Metab Dispos. 2022 Jun;50(6):762-769. doi: 10.1124/dmd.121.000780. Epub 2022 Mar 20.
Building and refining pharmacology models require "system" data derived from tissues and in vitro systems analyzed by quantitative proteomics. Label-free global proteomics offers a wide scope of analysis, allowing simultaneous quantification of thousands of proteins per sample. The data generated from such analysis offer comprehensive protein expression profiles that can address existing gaps in models. In this study, we assessed the performance of three widely used label-free proteomic methods, "high N" ion intensity approach (HiN), intensity-based absolute quantification (iBAQ) and total protein approach (TPA), in relation to the quantification of enzymes and transporters in 27 human liver microsomal samples. Global correlations between the three methods were highly significant (R > 0.70, < 0.001, = 2232 proteins). Absolute abundances of 57 pharmacokinetic targets measured by standard-based label-free methods (HiN and iBAQ) showed good agreement, whereas the TPA overestimated abundances by two- to threefold. Relative abundance distribution of enzymes was similar for the three methods, while differences were observed with TPA in the case of transporters. Variability (CV) was similar across methods, with consistent between-sample relative quantification. The back-calculated amount of protein in the samples based on each method was compared with the nominal protein amount analyzed in the proteomic workflow, revealing overall agreement with data from the HiN method with bovine serum albumin as standard. The findings herein present a critique of label-free proteomic data relevant to pharmacokinetics and evaluate the possibility of retrospective analysis of historic datasets. SIGNIFICANCE STATEMENT: This study provides useful insights for using label-free methods to generate abundance data applicable for populating pharmacokinetic models. The data demonstrated overall correlation between intensity-based label-free proteomic methods (HiN, iBAQ and TPA), whereas iBAQ and TPA overestimated the total amount of protein in the samples. The extent of overestimation can provide a means of normalization to support absolute quantification. Importantly, between-sample relative quantification was consistent (similar variability) across methods.
建立和完善药理学模型需要“系统”数据,这些数据源自通过定量蛋白质组学分析的组织和体外系统。无标记的全局蛋白质组学提供了广泛的分析范围,允许每个样品同时定量数千种蛋白质。此类分析产生的数据提供了全面的蛋白质表达谱,可以解决模型中存在的差距。在这项研究中,我们评估了三种广泛使用的无标记蛋白质组学方法,即“高 N”离子强度法(HiN)、基于强度的绝对定量(iBAQ)和总蛋白法(TPA)在 27 个人肝微粒体样品中酶和转运蛋白定量方面的性能。三种方法之间的全局相关性非常显著(R>0.70,<0.001,=2232 种蛋白质)。通过基于标准的无标记方法(HiN 和 iBAQ)测量的 57 种药代动力学靶标绝对丰度显示出良好的一致性,而 TPA 则高估了丰度两倍至三倍。三种方法的酶相对丰度分布相似,而 TPA 在转运蛋白方面存在差异。方法之间的变异性(CV)相似,具有一致的样品间相对定量。基于每种方法计算的样品中蛋白质的反推量与蛋白质组学工作流程中分析的名义蛋白质量进行了比较,与 HiN 方法以牛血清白蛋白为标准的数据总体一致。本研究提供了与药代动力学相关的无标记蛋白质组学数据的有用见解,并评估了对历史数据集进行回顾性分析的可能性。意义陈述:这项研究为使用无标记方法生成适用于填充药代动力学模型的丰度数据提供了有用的见解。数据表明,基于强度的无标记蛋白质组学方法(HiN、iBAQ 和 TPA)之间具有总体相关性,而 iBAQ 和 TPA 高估了样品中的总蛋白量。高估的程度可以提供一种标准化的手段来支持绝对定量。重要的是,方法之间的样品间相对定量是一致的(相似的变异性)。