Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure and Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou, Guangdong, 510640, China.
Small. 2022 Apr;18(17):e2200175. doi: 10.1002/smll.202200175. Epub 2022 Mar 20.
Solar evaporation is one of the most attractive and sustainable approaches to address worldwide freshwater scarcity. Unfortunately, it is still a crucial challenge that needs to be confronted when the solar evaporator faces harsh application environments. Herein, a promising polymer molding method that combines melt blending and compression molding, namely micro extrusion compression molding, is proposed for the cost-effective fabrication of lightweight polyethylene/graphene nanosheets (PE/GNs) foam with interconnected vapor escape channels and surface micro-nanostructures. A contact angle of 155 ± 2°, a rolling angle of 5 ± 1° and reflectance of ≈1.6% in the wavelength range of 300-2500 nm appears on the micro-nanostructured PE/GNs foam surface. More interestingly, the micro-nanostructured PE/GNs foam surface can maintain a robust superhydrophobic state under dynamic impacting, high temperature and acid-/alkali solutions. These results mean that the micro-nanostructured PE/GNs foam surface possesses self-cleaning, anti-icing and photothermal deicing properties at the same time. Importantly, the foam exhibits an evaporation rate of 1.83 kg m h under 1 Sun illumination and excellent salt rejecting performance when it is used as a self-floating solar evaporator. The proposed method provides an ideal and industrialized approach for the mass production of solar evaporators suitable for practical application environments.
太阳能蒸发是解决全球淡水短缺问题最具吸引力和可持续性的方法之一。不幸的是,当太阳能蒸发器面临恶劣的应用环境时,仍然需要面对一个关键的挑战。在此,提出了一种有前途的聚合物成型方法,该方法结合了熔融共混和压缩成型,即微挤出压缩成型,用于经济高效地制造具有互连蒸汽逸出通道和表面微纳结构的轻质聚乙烯/石墨烯纳米片(PE/GNs)泡沫。微纳结构化的 PE/GNs 泡沫表面具有 155 ± 2°的接触角、5 ± 1°的滚动角和约 1.6%的在 300-2500nm 波长范围内的反射率。更有趣的是,微纳结构化的 PE/GNs 泡沫表面在动态冲击、高温和酸/碱溶液下仍能保持稳定的超疏水状态。这些结果意味着微纳结构化的 PE/GNs 泡沫表面同时具有自清洁、防冰和光热除冰性能。重要的是,当用作自浮太阳能蒸发器时,该泡沫在 1 个太阳光照下的蒸发速率为 1.83kg m h,并且具有出色的盐排斥性能。该方法为适合实际应用环境的太阳能蒸发器的大规模生产提供了理想的工业化方法。