将Read2/CTV3受控临床术语映射到英国生物银行初级保健电子健康记录中的疾病编码:实施与评估

Mapping the Read2/CTV3 controlled clinical terminologies to Phecodes in UK Biobank primary care electronic health records: implementation and evaluation.

作者信息

Denaxas Spiros, Liu Ge, Feng Qiping, Fatemifar Ghazaleh, Bastarache Lisa, Kerchberger Eric V, Hingorani Aroon D, Lumbers Tom, Peterson Josh F, Wei Wei-Qi, Hemingway Harry

机构信息

University College London, London, UK.

Health Data Research UK, London, UK.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:362-371. eCollection 2021.

DOI:
Abstract

To establish and validate mappings between primary care clinical terminologies (Read Version 2, Clinical Terms Version 3) and Phecodes. We processed 123,662,421 primary care events from 230,096 UK Biobank (UKB) participants. We assessed the validity of the primary care-derived Phecodes by conducting PheWAS analyses for seven pre-selected SNPs in the UKB and compared with estimates from BioVU. We mapped 92% of Read2 (n=10,834) and 91% of CTV3 (n=21,988) to 1,449 and 1,490 Phecodes. UKB PheWAS using Phecodes from primary care EHR and hospitalizations replicated all (n=22) previously-reported genotype-phenotype associations. When limiting Phecodes to primary care EHR, replication was 81% (n=18). We introduced a first version of mappings from Read2/CTV3 to Phecodes. The reference list of diseases provided by Phecodes can be extended, enabling researchers to leverage primary care EHR for high-throughput discovery research.

摘要

建立并验证初级保健临床术语(Read版本2、临床术语版本3)与Phecodes之间的映射关系。我们处理了来自230,096名英国生物银行(UKB)参与者的123,662,421个初级保健事件。我们通过对UKB中七个预先选择的单核苷酸多态性(SNP)进行全基因组关联研究(PheWAS)分析,并与BioVU的估计值进行比较,评估了源自初级保健的Phecodes的有效性。我们将92%的Read2(n = 10,834)和91%的CTV3(n = 21,988)映射到1,449个和1,490个Phecodes。使用来自初级保健电子健康记录(EHR)和住院记录的Phecodes进行的UKB PheWAS重复了所有(n = 22)先前报告的基因型-表型关联。当将Phecodes限制在初级保健EHR时,重复率为81%(n = 18)。我们引入了从Read2/CTV3到Phecodes的第一版映射关系。Phecodes提供的疾病参考列表可以扩展,使研究人员能够利用初级保健EHR进行高通量发现研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索