Suppr超能文献

在 COVID-19 大流行期间,电子健康记录增加了临床医生的时间。

Increased Clinician Time Using Electronic Health Records During COVID-19 Pandemic.

机构信息

Department of Medicine, Authors Duke University School of Medicine, Durham, NC, USA.

Duke Primary Care, Authors Duke University School of Medicine, Durham, NC, USA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:1159-1168. eCollection 2021.

Abstract

The COVID-19 pandemic challenged how healthcare systems provided care in socially distanced formats. We hypothesized that the COVID-19 era changes in clinical care delivery models contributed to increased Electronic Health Record (EHR) related work. To evaluate the changes in time and volume metrics of EHR usage, we segregated EHR audit log metric data into PreCOVID2019 March/April/May, initial COVID2020 March/April/May, and late COVID2021 March/April/May for 1262 physician providers. We discovered significant and pragmatically meaningful increases in total average time providers spent in the EHR in minutes mean(SD) PreCOVID2019=1958(1576), Mid-COVID2020=1709(1473), Late-COVID2021=2007(1563). Differences in total time in the EHR were significant Pre-mid:p-value=<0.001, but not Pre-Late:p=0.439. Total number of messages received across all specialties increased significantly mean(SD) PreCOVID=459(389), MidCOVID=400(362), LateCOVID 521(423) Pre-Mid p-value=<0.001 and Pre-Late p-value=<0.001. We additionally found changes in total time to differ significantly across select specialties. Based on these findings we recommend further assessment of physician workload and how new factors such as telehealth are contributing to EHR usage.

摘要

新冠疫情大流行挑战了医疗系统如何以保持社交距离的形式提供护理。我们假设,新冠疫情时代临床护理提供模式的改变导致电子健康记录(EHR)相关工作增加。为了评估 EHR 使用的时间和量度指标的变化,我们将 EHR 审核日志量度数据分为 PreCOVID2019 年 3/4/5 月、初始 COVID2020 年 3/4/5 月和后期 COVID2021 年 3/4/5 月,用于 1262 名医师提供者。我们发现,提供者在 EHR 中花费的总平均时间在分钟方面有显著且具有实际意义的增加,Mean(SD) PreCOVID2019=1958(1576),Mid-COVID2020=1709(1473),Late-COVID2021=2007(1563)。EHR 中的总时间差异具有统计学意义 Pre-Mid:p-value=<0.001,但 Pre-Late:p=0.439。所有专业的总消息接收量均显著增加,Mean(SD) PreCOVID=459(389),MidCOVID=400(362),LateCOVID=521(423) Pre-Mid p-value=<0.001,Pre-Late p-value=<0.001。此外,我们还发现特定专业的总时间变化存在显著差异。根据这些发现,我们建议进一步评估医师的工作量,以及新因素(如远程医疗)如何影响 EHR 的使用。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验