Suppr超能文献

着床前基因检测所显示的关于早期发育胚胎中单体性发生起源的新见解。

New insights regarding origin of monosomy occurrence in early developing embryos as demonstrated in preimplantation genetic testing.

作者信息

Samara N, Peleg S, Frumkin T, Gold V, Amir H, Haikin Herzberger Einat, Reches A, Kalma Y, Ben Yosef Dalit, Azem F, Malcov M

机构信息

IVF Lab and Wolfe PGD-Stem Cell Lab, Fertility Institute, Tel-Aviv Sourasky Medical Center, Weismann 6, Tel Aviv, Israel.

Department of Cell Biology and Development Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.

出版信息

Mol Cytogenet. 2022 Mar 21;15(1):11. doi: 10.1186/s13039-022-00582-5.

Abstract

INTRODUCTION

Analyses of miscarriage products indicate that the majority of aneuploidies in early developing embryos derive from errors occurring during maternal meiosis and the paternal contribution is less than 10%. Our aim was to assess the aneuploidy (mainly monosmies) frequencies at the earliest stages of embryo development, 3 days following fertilization during In vitro fertilization (IVF) treatments and to elucidate their parental origin. Later, we compared monosomies rates of day 3 to those of day 5 as demonstrated from Preimplantation Genetic Testing for Structural chromosomal Rearrangement (PGT-SR) results.

METHODS

For a retrospective study, we collected data of 210 Preimplantation Genetic Testing for Monogenic Disorder (PGT-M) cycles performed between years 2008 and 2019.This study includes 2083 embryos, of 113 couples. It also included 432 embryos from 90 PGT-SR cycles of other 45 patients, carriers of balanced translocations. Defining the parental origin of aneuploidy in cleavage stage embryos was based on haplotypes analysis of at least six informative markers flanking the analyzed gene. For comprehensive chromosomal screening (CCS), chromosomal microarray (CMA) and next generation sequencing (NGS) was used.

RESULTS

We inspected haplotype data of 40 genomic regions, flanking analyzed genes located on 9 different chromosomes.151 (7.2%) embryos presented numerical alterations in the tested chromosomes. We found similar paternal and maternal contribution to monosomy at cleavage stage. We demonstrated paternal origin in 51.5% of the monosomy, and maternal origin in 48.5% of the monosomies cases.

CONCLUSION

In our study, we found equal parental contribution to monosomies in cleavage-stage embryos. Comparison to CCS analyses of PGT-SR patients revealed a lower rate of monosomy per chromosome in embryos at day 5 of development. This is in contrast to the maternal dominancy described in studies of early miscarriage. Mitotic errors and paternal involvement in chemical pregnancies and IVF failure should be re-evaluated. Our results show monosomies are relatively common and may play a role in early development of ART embryos.

摘要

引言

对流产产物的分析表明,早期发育胚胎中的大多数非整倍体源自母本减数分裂期间发生的错误,父本的贡献不到10%。我们的目的是评估胚胎发育最早阶段(体外受精(IVF)治疗中受精后3天)的非整倍体(主要是单体)频率,并阐明其亲本来源。随后,我们将第3天的单体率与第5天的单体率进行了比较,这是根据植入前基因检测结构性染色体重排(PGT-SR)结果得出的。

方法

对于一项回顾性研究,我们收集了2008年至2019年间进行的210个单基因疾病植入前基因检测(PGT-M)周期的数据。本研究包括113对夫妇的2083个胚胎。它还包括来自其他45名平衡易位携带者患者的90个PGT-SR周期的432个胚胎。通过对至少六个位于分析基因侧翼的信息性标记进行单倍型分析来确定卵裂期胚胎中非整倍体的亲本来源。对于全面染色体筛查(CCS),使用了染色体微阵列(CMA)和下一代测序(NGS)。

结果

我们检查了位于9条不同染色体上的分析基因侧翼的40个基因组区域的单倍型数据。151个(7.2%)胚胎在测试染色体上出现了数目改变。我们发现在卵裂期,父本和母本对单体的贡献相似。我们发现51.5%的单体起源于父本,48.5%的单体病例起源于母本。

结论

在我们的研究中,我们发现卵裂期胚胎中父本和母本对单体的贡献相等。与PGT-SR患者的CCS分析相比,发育第5天胚胎中每条染色体的单体率较低。这与早期流产研究中描述的母本主导性相反。有丝分裂错误以及父本在化学妊娠和IVF失败中的作用应重新评估。我们的结果表明单体相对常见,可能在ART胚胎的早期发育中起作用。

相似文献

3
The incidence and origin of segmental aneuploidy in human oocytes and preimplantation embryos.
Hum Reprod. 2017 Dec 1;32(12):2549-2560. doi: 10.1093/humrep/dex324.
7
Origins and rates of aneuploidy in human blastomeres.
Fertil Steril. 2012 Feb;97(2):395-401. doi: 10.1016/j.fertnstert.2011.11.034. Epub 2011 Dec 21.
9
Segmental duplications and monosomies are linked to in vitro developmental arrest.
J Assist Reprod Genet. 2021 Aug;38(8):2183-2192. doi: 10.1007/s10815-021-02147-8. Epub 2021 Mar 19.
10
Impact of male age on paternal aneuploidy: single-nucleotide polymorphism microarray outcomes following blastocyst biopsy.
Reprod Biomed Online. 2023 Oct;47(4):103245. doi: 10.1016/j.rbmo.2023.06.002. Epub 2023 Jun 10.

引用本文的文献

1
Structural rearrangements affect blastocyst development.
Arch Gynecol Obstet. 2025 Jul 12. doi: 10.1007/s00404-025-08101-8.
2
Advanced strategies for single embryo selection in assisted human reproduction: A review of clinical practice and research methods.
Clin Exp Reprod Med. 2025 Mar;52(1):8-29. doi: 10.5653/cerm.2023.06478. Epub 2024 Jun 10.
3
The association between a carrier state of FMR1 premutation and numeric sex chromosome variations.
J Assist Reprod Genet. 2023 Mar;40(3):683-688. doi: 10.1007/s10815-023-02730-1. Epub 2023 Feb 1.

本文引用的文献

1
The role of total chromosomal disomy in human spermatozoa as a predictor of the outcome of pre-implantation genetic screening.
Fertil Steril. 2020 Jun;113(6):1196-1204.e1. doi: 10.1016/j.fertnstert.2020.02.004. Epub 2020 May 13.
2
Incidence, Origin, and Predictive Model for the Detection and Clinical Management of Segmental Aneuploidies in Human Embryos.
Am J Hum Genet. 2020 Apr 2;106(4):525-534. doi: 10.1016/j.ajhg.2020.03.005. Epub 2020 Mar 26.
3
Clinical application of embryo aneuploidy testing by next-generation sequencing.
Biol Reprod. 2019 Dec 24;101(6):1083-1090. doi: 10.1093/biolre/ioz019.
4
Incidence and origin of meiotic whole and segmental chromosomal aneuploidies detected by karyomapping.
Reprod Biomed Online. 2019 Mar;38(3):330-339. doi: 10.1016/j.rbmo.2018.11.023. Epub 2018 Dec 23.
5
Meiotic nondisjunction and sperm aneuploidy in humans.
Reproduction. 2019 Jan;157(1):R15-R31. doi: 10.1530/REP-18-0318.
6
Insights into imprinting from parent-of-origin phased methylomes and transcriptomes.
Nat Genet. 2018 Nov;50(11):1542-1552. doi: 10.1038/s41588-018-0232-7. Epub 2018 Oct 22.
7
Single-cell multi-omics sequencing of human early embryos.
Nat Cell Biol. 2018 Jul;20(7):847-858. doi: 10.1038/s41556-018-0123-2. Epub 2018 Jun 18.
8
Does genome organization matter in spermatozoa? A refined hypothesis to awaken the silent vessel.
Syst Biol Reprod Med. 2018 Dec;64(6):518-534. doi: 10.1080/19396368.2017.1421278. Epub 2018 Jan 2.
10
Complex chromosomal rearrangement-a lesson learned from PGS.
J Assist Reprod Genet. 2017 Aug;34(8):1095-1100. doi: 10.1007/s10815-017-0954-y. Epub 2017 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验