School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan.
Sci Rep. 2022 Mar 21;12(1):4794. doi: 10.1038/s41598-022-08284-z.
Many studies had established the chronic kidney disease (CKD) prediction models, but most of them were conducted on the general population and not on patients with type 2 diabetes, especially in Asian populations. This study aimed to develop a risk prediction model for CKD in patients with type 2 diabetes from the Diabetes Care Management Program (DCMP) in Taiwan. This research was a retrospective cohort study. We used the DCMP database to set up a cohort of 4,601 patients with type 2 diabetes without CKD aged 40-92 years enrolled in the DCMP program of a Taichung medical center in 2002-2016. All patients were followed up until incidences of CKD, death, and loss to follow-up or 2016. The dataset for participants of national DCMP in 2002-2004 was used as external validation. The incident CKD cases were defined as having one of the following three conditions: ACR data greater than or equal to 300 (mg/g); both eGFR data less than 60 (ml/min/1.73 m) and ACR data greater than or equal to 30 (mg/g); and eGFR data less than 45 (ml/min/1.73 m). The study subjects were randomly allocated to derivation and validation sets at a 2:1 ratio. Cox proportional hazards regression model was used to identify the risk factors of CKD in the derivation set. Time-varying area under receiver operating characteristics curve (AUC) was used to evaluate the performance of the risk model. After an average of 3.8 years of follow-up period, 3,067 study subjects were included in the derivation set, and 786 (25.63%) were newly diagnosed CKD cases. A total of 1,534 participants were designated to the validation set, and 378 (24.64%) were newly diagnosed CKD cases. The final CKD risk factors consisted of age, duration of diabetes, insulin use, estimated glomerular filtration rate, albumin-to-creatinine ratio, high-density lipoprotein cholesterol, triglyceride, diabetes retinopathy, variation in HbA1c, variation in FPG, and hypertension drug use. The AUC values of 1-, 3-, and 5-year CKD risks were 0.74, 0.76, and 0.77 in the validation set, respectively, and were 0.76, 0.77, and 0.76 in the sample for external validation, respectively. The value of Harrell's c-statistics was 0.76 (0.74, 0.78). The proposed model is the first CKD risk prediction model for type 2 diabetes patients in Taiwan. The 1-, 3-, and 5-year CKD risk prediction models showed good prediction accuracy. The model can be used as a guide for clinicians to develop medical plans for future CKD preventive intervention in Chinese patients with type 2 diabetes.
许多研究已经建立了慢性肾脏病(CKD)预测模型,但大多数研究都是针对普通人群进行的,而不是针对 2 型糖尿病患者,尤其是在亚洲人群中。本研究旨在从台湾的糖尿病照护管理计划(DCMP)中建立 2 型糖尿病患者 CKD 的风险预测模型。本研究是一项回顾性队列研究。我们使用 DCMP 数据库,从 2002 年至 2016 年,在台中医疗中心的 DCMP 计划中,建立了一个年龄在 40-92 岁之间、无 CKD 的 4601 名 2 型糖尿病患者队列。所有患者均随访至 CKD 发病、死亡、失访或 2016 年。2002-2004 年全国 DCMP 参与者的数据集用于外部验证。新发 CKD 病例定义为以下三种情况之一:ACR 数据大于或等于 300(mg/g);eGFR 数据小于 60(ml/min/1.73 m)且 ACR 数据大于或等于 30(mg/g);和 eGFR 数据小于 45(ml/min/1.73 m)。研究对象以 2:1 的比例随机分配到推导集和验证集。Cox 比例风险回归模型用于识别推导集中 CKD 的风险因素。时间变化的接收器工作特征曲线(AUC)用于评估风险模型的性能。在平均 3.8 年的随访期后,3067 名研究对象被纳入推导集,其中 3067 名(25.63%)为新诊断的 CKD 病例。共有 1534 名参与者被指定为验证集,其中 378 名(24.64%)为新诊断的 CKD 病例。最终的 CKD 风险因素包括年龄、糖尿病病程、胰岛素使用、估计肾小球滤过率、白蛋白与肌酐比值、高密度脂蛋白胆固醇、甘油三酯、糖尿病视网膜病变、HbA1c 变化、FPG 变化和高血压药物使用。验证集中 1、3 和 5 年 CKD 风险的 AUC 值分别为 0.74、0.76 和 0.77,外部验证样本中的 AUC 值分别为 0.76、0.77 和 0.76。哈雷尔 C 统计量的值为 0.76(0.74、0.78)。该模型是台湾第一个 2 型糖尿病患者 CKD 风险预测模型。1、3 和 5 年 CKD 风险预测模型具有良好的预测准确性。该模型可用于指导临床医生为中国 2 型糖尿病患者制定未来 CKD 预防干预的医疗计划。