Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.
Department of Pathology and Immunology, Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri.
Cancer Res. 2022 May 16;82(10):2019-2030. doi: 10.1158/0008-5472.CAN-21-0871.
Medulloblastoma has been categorized into four subgroups based on genetic, epigenetic, and transcriptional profiling. Radiation is used for treating medulloblastoma regardless of the subgroup. A better understanding of the molecular pathways determining radiotherapy response could help improve medulloblastoma treatment. Here, we investigated the role of the EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit)-dependent histone H3K27 trimethylation in radiotherapy response in medulloblastoma. The tumors in 47.2% of patients with group 3 and 4 medulloblastoma displayed H3K27me3 deficiency. Loss of H3K27me3 was associated with a radioresistant phenotype, high relapse rates, and poor overall survival. In H3K27me3-deficient medulloblastoma cells, an epigenetic switch from H3K27me3 to H3K27ac occurred at specific genomic loci, altering the transcriptional profile. The resulting upregulation of EPHA2 stimulated excessive activation of the prosurvival AKT signaling pathway, leading to radiotherapy resistance. Bromodomain and extraterminal motif (BET) inhibition overcame radiation resistance in H3K27me3-deficient medulloblastoma cells by suppressing H3K27ac levels, blunting EPHA2 overexpression, and mitigating excessive AKT signaling. In addition, BET inhibition sensitized medulloblastoma cells to radiation by enhancing the apoptotic response through suppression of Bcl-xL and upregulation of Bim. This work demonstrates a novel mechanism of radiation resistance in medulloblastoma and identifies an epigenetic marker predictive of radiotherapy response. On the basis of these findings, we propose an epigenetically guided treatment approach targeting radiotherapy resistance in patients with medulloblastoma.
This study demonstrates a novel epigenetic mechanism of radiation resistance in medulloblastoma and identifies a therapeutic approach to improve outcomes in these patients.
基于遗传、表观遗传和转录谱分析,髓母细胞瘤已分为四个亚组。无论亚组如何,放疗均用于治疗髓母细胞瘤。更好地了解决定放疗反应的分子途径可能有助于改善髓母细胞瘤的治疗。在这里,我们研究了 EZH2(增强子结合锌指 2 多梳抑制复合物 2 亚基)依赖性组蛋白 H3K27 三甲基化在髓母细胞瘤放疗反应中的作用。在 3 组和 4 组髓母细胞瘤的 47.2%的肿瘤中显示 H3K27me3 缺乏。H3K27me3 的缺失与放射抗性表型、高复发率和总体生存率差有关。在 H3K27me3 缺乏的髓母细胞瘤细胞中,特定基因组位点发生了从 H3K27me3 到 H3K27ac 的表观遗传开关,改变了转录谱。由此导致的 EPHA2 上调刺激了 AKT 生存信号通路的过度激活,导致放疗抵抗。BET 抑制通过抑制 H3K27ac 水平、阻断 EPHA2 过表达和减轻过度 AKT 信号来克服 H3K27me3 缺乏的髓母细胞瘤细胞的辐射抗性。此外,BET 抑制通过抑制 Bcl-xL 和上调 Bim 来增强凋亡反应,从而使髓母细胞瘤细胞对放疗敏感。这项工作证明了髓母细胞瘤中放射抵抗的一种新的表观遗传机制,并确定了一种预测放疗反应的表观遗传标记。基于这些发现,我们提出了一种针对髓母细胞瘤放疗抵抗的基于表观遗传学的治疗方法。
本研究证明了髓母细胞瘤中放射抵抗的一种新的表观遗传机制,并确定了一种改善这些患者预后的治疗方法。