Suppr超能文献

胰腺导管腺癌(PDAC)循环肿瘤细胞影响髓样细胞分化,以支持其在门静脉循环中的存活和免疫抵抗。

Pancreatic Ductal Adenocarcinoma (PDAC) circulating tumor cells influence myeloid cell differentiation to support their survival and immunoresistance in portal vein circulation.

机构信息

Center for Surgical Oncology, AdventHealth Cancer Institute, Orlando, Florida, United States of America.

General SurgeryResidency Program, AdventHealth, Orlando, Florida, United States of America.

出版信息

PLoS One. 2022 Mar 22;17(3):e0265725. doi: 10.1371/journal.pone.0265725. eCollection 2022.

Abstract

The portal venous circulation provides a conduit for pancreatic ductal adenocarcinoma (PDAC) tumor cells to the liver parenchyma sinusoids, a frequent site of metastasis. Turbulent flow in the portal circulation promotes retention of PDAC shed circulating tumor cells (CTC) and myeloid-derived immunosuppressor cells (MDSC). Excessive colony stimulating factor-1 receptor (CSF1R) signaling can induce myeloid differentiation to MDSC and transformation of MDSC to myeloid-derived fibroblasts (M-FB). Interactions between PDAC CTC and M-FB in the portal blood promotes the formation of immunoresistant clusters that enhance CTC proliferation, migration, and survival. Analysis of portal and peripheral blood samples collected intraoperatively from 30 PDAC patients undergoing pancreatico-duodenectomy showed that PDAC patient plasma contained high levels of macrophage colony stimulating factor (M-CSF/CSF1), granulocyte-macrophage colony stimulating factor (GM-CSF/CSF2), interleukin-8 (IL-8), and interleukin-34 (IL-34) compared to healthy control levels. Moreover, the level of M-CSF in portal blood was significantly higher than that detected in the peripheral blood of PDAC patients. PDAC CTC aseptically isolated by fluorescence activated cell sorting (FACS) out of freshly collected patient portal blood mononuclear cells (PortalBMC) had elevated RNA expression of IL34 (IL-34 gene) and CSF1 (M-CSF/CSF1 gene) which both signal through CSF1R. PDAC CTC also had high levels of RNA expression for CXCL8, the gene encoding chemokine interleukin-8 (IL-8) which can attract myeloid cells through their CXCR2 receptors. FACS-isolated portal PDAC CTC and M-FB co-cultured ex vivo had increased CTC proliferation, motility, and cluster formation compared to CTC cultured alone. CSF1R and CXCR2 cell surface expression were found on PDAC portal blood CTC and M-FB, suggesting that both cell types may respond to M-CSF, IL-34, and IL-8-mediated signaling. Portal PDAC CTC displayed enhanced RNA expression of CSF1 and IL34, while CTC+M-FB+ clusters formed in vivo had increased RNA expression of CSF2 and IL34. Portal M-FB were found to have high CSF1R RNA expression. CTC isolated from ex vivo 7-day cultures of PDAC patient portal blood mononuclear cells (PortalBMC) expressed elevated CSF1, IL34, and IL8 RNA, and CSF1 expression was elevated in M-FB. Treatment with rabbit anti-CSF1R antibodies decreased CTC proliferation. Treatment of PortalBMC cultures with humanized anti-CSF1R, humanized anti-IL-8, or anti-IL-34 antibodies disrupted CTC cluster formation and increased CTC apoptosis. U937 myeloid precursor cell line cultures treated with conditioned media from PortalBMC ex vivo cultures without treatment or treated with anti-IL-8 and/or anti-CSF1R did not prevent myeloid differentiation in the myeloid precursor cell line U937 to macrophage, dendritic cell, MDSC, and M-FB phenotypes; whereas, U937 cultures treated with conditioned media from PortalBMC ex vivo cultures exposed to anti-IL-34 were significantly inhibited in their myeloid differentiation to all but the M-FB phenotype. PDAC patient T cells that were found phenotypically anergic (CD3+CD25+CTLA4+PD1L1+) in PortalBMC could be re-activated (CD3+CD25+CTLA4-PD1L1-), and displayed increased interferon gamma (IFNγ) production when PortalBMC ex vivo cultures were treated with anti-CSF1R, anti-IL-8, and anti-IL-34 antibodies alone or in combination. These findings suggest that PDAC CTC have the potential to influence myeloid differentiation and/or antigen presenting cell activation in the PDAC portal blood microenvironment, and that disruption of CTC/M-FB interactions may be potential targets for reversing the immunosuppression supporting CTC survival in the portal blood.

摘要

门静脉循环为胰腺导管腺癌 (PDAC) 肿瘤细胞提供了通往肝实质窦的途径,这是转移的常见部位。门静脉循环中的湍流促进了 PDAC 脱落的循环肿瘤细胞 (CTC) 和髓系来源的免疫抑制细胞 (MDSC) 的保留。过量的集落刺激因子-1 受体 (CSF1R) 信号可以诱导髓系分化为 MDSC,并将 MDSC 转化为髓系来源的成纤维细胞 (M-FB)。PDAC CTC 与门静脉血中的 M-FB 相互作用促进了免疫抵抗簇的形成,增强了 CTC 的增殖、迁移和存活。对 30 名接受胰十二指肠切除术的 PDAC 患者术中采集的门静脉和外周血样本进行分析显示,与健康对照组相比,PDAC 患者血浆中含有高水平的巨噬细胞集落刺激因子 (M-CSF/CSF1)、粒细胞-巨噬细胞集落刺激因子 (GM-CSF/CSF2)、白细胞介素-8 (IL-8) 和白细胞介素-34 (IL-34)。此外,门静脉血中 M-CSF 的水平明显高于 PDAC 患者外周血中的检测水平。通过荧光激活细胞分选 (FACS) 从新鲜采集的患者门静脉血单核细胞 (PortalBMC) 中无菌分离的 PDAC CTC,其 IL34(IL-34 基因)和 CSF1(M-CSF/CSF1 基因)的 RNA 表达水平升高,这两者都通过 CSF1R 信号传导。PDAC CTC 还具有高水平的 RNA 表达,编码趋化因子白细胞介素-8 (IL-8) 的 CXCL8,其可以通过其 CXCR2 受体吸引髓样细胞。与单独培养 CTC 相比,FACS 分离的门静脉 PDAC CTC 和 M-FB 共培养可增加 CTC 的增殖、迁移和簇形成。在 PDAC 门静脉血 CTC 和 M-FB 上发现 CSF1R 和 CXCR2 细胞表面表达,表明这两种细胞类型可能对 M-CSF、IL-34 和 IL-8 介导的信号作出反应。门静脉 PDAC CTC 显示 CSF1 和 IL34 的 RNA 表达增强,而在体内形成的 CTC+M-FB+簇中 CSF2 和 IL34 的 RNA 表达增加。发现门静脉 M-FB 具有高 CSF1R RNA 表达。从 PDAC 患者门静脉血单核细胞 (PortalBMC) 的 7 天体外培养物中分离的 CTC 表达升高的 CSF1、IL34 和 IL8 RNA,并且 M-FB 中 CSF1 的表达升高。用兔抗 CSF1R 抗体处理可降低 CTC 的增殖。用抗 CSF1R、抗 IL-8 或抗 IL-34 抗体处理 PortalBMC 培养物可破坏 CTC 簇形成并增加 CTC 凋亡。用无处理或用抗 IL-8 和/或抗 CSF1R 处理的 PortalBMC 体外培养物的条件培养基处理的 U937 髓样前体细胞系培养物不会阻止髓样前体细胞系 U937 向巨噬细胞、树突状细胞、MDSC 和 M-FB 表型的分化;然而,用 PortalBMC 体外培养物的条件培养基处理的 U937 培养物中,抗 IL-34 处理显著抑制了除 M-FB 表型之外的所有细胞向髓样分化。在 PortalBMC 中发现表型无反应性 (CD3+CD25+CTLA4+PD1L1+) 的 PDAC 患者 T 细胞可以被重新激活 (CD3+CD25+CTLA4-PD1L1-),并且当单独或联合使用抗 CSF1R、抗 IL-8 和抗 IL-34 抗体处理 PortalBMC 体外培养物时,显示出增加的干扰素 γ (IFNγ) 产生。这些发现表明,PDAC CTC 有可能影响 PDAC 门静脉血液微环境中的髓系分化和/或抗原呈递细胞激活,并且破坏 CTC/M-FB 相互作用可能是逆转支持 CTC 在门静脉血液中存活的免疫抑制的潜在靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39d1/8939813/04298f432c78/pone.0265725.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验