Tsiok Elena N, Fomin Yuri D, Gaiduk Eugene A, Tareyeva Elena E, Ryzhov Valentin N, Libet Pavel A, Dmitryuk Nikita A, Kryuchkov Nikita P, Yurchenko Stanislav O
Institute of High Pressure Physics RAS, Kaluzhskoe Shosse, 14, Troitsk, Moscow 108840, Russia.
Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia.
J Chem Phys. 2022 Mar 21;156(11):114703. doi: 10.1063/5.0075479.
Monolayer and two-dimensional (2D) systems exhibit rich phase behavior, compared with 3D systems, in particular, due to the hexatic phase playing a central role in melting scenarios. The attraction range is known to affect critical gas-liquid behavior (liquid-liquid in protein and colloidal systems), but the effect of attraction on melting in 2D systems remains unstudied systematically. Here, we have revealed how the attraction range affects the phase diagrams and melting scenarios in a 2D system. Using molecular dynamics simulations, we have considered the generalized Lennard-Jones system with a fixed repulsion branch and different power indices of attraction from long-range dipolar to short-range sticky-sphere-like. A drop in the attraction range has been found to reduce the temperature of the gas-liquid critical point, bringing it closer to the gas-liquid-solid triple point. At high temperatures, attraction does not affect the melting scenario that proceeds through the cascade of solid-hexatic (Berezinskii-Kosterlitz-Thouless) and hexatic-liquid (first-order) phase transitions. In the case of dipolar attraction, we have observed two triple points inherent in a 2D system: hexatic-liquid-gas and crystal-hexatic-gas, the temperature of the crystal-hexatic-gas triple point is below the hexatic-liquid-gas triple point. This observation may have far-reaching consequences for future studies, since phase diagrams determine possible routes of self-assembly in molecular, protein, and colloidal systems, whereas the attraction range can be adjusted with complex solvents and external electric or magnetic fields. The results obtained may be widely used in condensed matter, chemical physics, materials science, and soft matter.
与三维系统相比,单层和二维(2D)系统展现出丰富的相行为,特别是由于六次近晶相在熔化过程中起着核心作用。已知吸引力范围会影响临界气液行为(蛋白质和胶体系统中的液-液行为),但吸引力对二维系统熔化的影响尚未得到系统研究。在此,我们揭示了吸引力范围如何影响二维系统中的相图和熔化过程。通过分子动力学模拟,我们研究了具有固定排斥分支以及从长程偶极到短程类粘性球等不同吸引力幂指数的广义 Lennard-Jones 系统。发现吸引力范围的减小会降低气液临界点的温度,使其更接近气液固三相点。在高温下,吸引力不影响通过固体-六次近晶相(Berezinskii-Kosterlitz-Thouless)和六次近晶相-液相(一级)相变级联进行的熔化过程。在偶极吸引力的情况下,我们观察到二维系统中固有的两个三相点:六次近晶相-液相-气相和晶体-六次近晶相-气相,晶体-六次近晶相-气相三相点的温度低于六次近晶相-液相-气相三相点。这一观察结果可能对未来研究产生深远影响,因为相图决定了分子、蛋白质和胶体系统中自组装的可能途径,而吸引力范围可以通过复杂溶剂以及外部电场或磁场进行调节。所获得的结果可能在凝聚态物理、化学物理、材料科学和软物质领域得到广泛应用。