Kim Yu Lim, Gordon Mark S, Garcia Andres, Evans James W
Ames Laboratory - U.S. Department of Energy, Iowa State University, Ames, Iowa 50011, USA.
J Chem Phys. 2022 Mar 21;156(11):114503. doi: 10.1063/5.0079212.
Molecular Dynamics (MD) simulations based on the Effective Fragment Potential (EFP) method are utilized to provide a comprehensive assessment of diffusion in liquid n-hexane. We decompose translational diffusion into components along and orthogonal to the long axis of the molecule. Rotational diffusion is decomposed into tumbling and spinning motions about this axis. Our analysis yields four corresponding diffusion coefficients which are related to diagonal entries in the complete 6 × 6 diffusion tensor accounting for the three rotational and three translational degrees of freedom and for the potential coupling between them. However, coupling between different degrees of freedom is expected to be minimal for a natural choice of the molecular body-fixed axis, so then off-diagonal entries in the tensor are negligible. This expectation is supported by a hydrodynamic analysis of the diffusion tensor which treats the liquid surrounding the molecule being tracked as a viscous continuum. Thus, the EFP MD analysis provides a comprehensive characterization of diffusion and also reveals expected shortcomings of the hydrodynamic treatment, particularly for rotational diffusion, when applied to neat liquids.
基于有效片段势(EFP)方法的分子动力学(MD)模拟被用于全面评估液体正己烷中的扩散。我们将平动扩散分解为沿分子长轴方向及其正交方向的分量。转动扩散则分解为绕该轴的翻滚和自旋运动。我们的分析得出了四个相应的扩散系数,它们与完整的6×6扩散张量中的对角项相关,该张量考虑了三个转动自由度、三个平动自由度以及它们之间的势耦合。然而,对于分子体固定轴的自然选择,不同自由度之间的耦合预计最小,因此张量中的非对角项可以忽略不计。对扩散张量的流体动力学分析支持了这一预期,该分析将被跟踪分子周围的液体视为粘性连续介质。因此,EFP MD分析提供了扩散的全面表征,同时也揭示了流体动力学处理在应用于纯液体时,特别是对于转动扩散,预期存在的不足之处。