Suppr超能文献

贻贝丝黏弹性分析揭示了能量耗散机制。

Viscoelastic analysis of mussel threads reveals energy dissipative mechanisms.

机构信息

Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA.

Biomolecular Science and Engineering Graduate Program, University of California, Santa Barbara, CA 93106, USA.

出版信息

J R Soc Interface. 2022 Mar;19(188):20210828. doi: 10.1098/rsif.2021.0828. Epub 2022 Mar 23.

Abstract

Mussels use byssal threads to secure themselves to rocks and as shock absorbers during cyclic loading from wave motion. Byssal threads combine high strength and toughness with extensibility of nearly 200%. Researchers attribute tensile properties of byssal threads to their elaborate multi-domain collagenous protein cores. Because the elastic properties have been previously scrutinized, we instead examined byssal thread viscoelastic behaviour, which is essential for withstanding cyclic loading. By targeting protein domains in the collagenous core via chemical treatments, stress relaxation experiments provided insights on domain contributions and were coupled with small-angle X-ray scattering to investigate relaxation-specific molecular reorganizations. Results show that when silk-like domains in the core were disrupted, the stress relaxation of the threads decreased by nearly 50% and lateral molecular spacing also decreased, suggesting that these domains are essential for energy dissipation and assume a compressed molecular rearrangement when disrupted. A generalized Maxwell model was developed to describe the stress relaxation response. The model predicts that maximal damping (energy dissipation) occurs at around 0.1 Hz which closely resembles the wave frequency along the California coast and implies that these materials may be well adapted to the cyclic loading of the ambient conditions.

摘要

贻贝利用足丝将自己固定在岩石上,并在波浪运动产生的周期性负荷下作为减震器。足丝具有高强度、高韧性和近 200%的可拉伸性。研究人员将足丝的拉伸性能归因于其精细的多域胶原蛋白核心。由于弹性特性已经过先前的仔细研究,因此我们转而研究足丝的粘弹性行为,这对于承受周期性负荷至关重要。通过针对胶原蛋白核心中的蛋白质域进行化学处理,应力松弛实验提供了关于域贡献的见解,并与小角 X 射线散射相结合,以研究特定于松弛的分子重排。结果表明,当核心中的类丝域被破坏时,线程的应力松弛几乎降低了 50%,并且横向分子间距也降低了,这表明这些域对于能量耗散是必不可少的,并且在被破坏时会发生压缩分子重排。开发了一个广义的 Maxwell 模型来描述应力松弛响应。该模型预测最大阻尼(能量耗散)发生在大约 0.1 Hz 左右,这与加利福尼亚海岸的波浪频率非常接近,这意味着这些材料可能非常适合环境条件的周期性负荷。

相似文献

1
Viscoelastic analysis of mussel threads reveals energy dissipative mechanisms.
J R Soc Interface. 2022 Mar;19(188):20210828. doi: 10.1098/rsif.2021.0828. Epub 2022 Mar 23.
2
Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads.
J Struct Biol. 2011 Sep;175(3):339-47. doi: 10.1016/j.jsb.2011.05.016. Epub 2011 May 24.
3
Cooperative behavior of a sacrificial bond network and elastic framework in providing self-healing capacity in mussel byssal threads.
J Struct Biol. 2016 Dec;196(3):329-339. doi: 10.1016/j.jsb.2016.07.020. Epub 2016 Jul 29.
4
A potential mediator of collagenous block copolymer gradients in mussel byssal threads.
Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10517-22. doi: 10.1073/pnas.95.18.10517.
6
Along the silk road, spiders make way for mussels.
Trends Biotechnol. 2008 Feb;26(2):55-7. doi: 10.1016/j.tibtech.2007.11.003. Epub 2008 Jan 11.
7
pH-dependent locking of giant mesogens in fibers drawn from mussel byssal collagens.
Biomacromolecules. 2008 May;9(5):1480-6. doi: 10.1021/bm8000827. Epub 2008 Apr 11.
8
Mapping chemical gradients within and along a fibrous structural tissue, mussel byssal threads.
J Biol Chem. 2005 Nov 25;280(47):39332-6. doi: 10.1074/jbc.M508674200. Epub 2005 Sep 15.
9
Extensible collagen in mussel byssus: a natural block copolymer.
Science. 1997 Sep 19;277(5333):1830-2. doi: 10.1126/science.277.5333.1830.
10
Elastomeric gradients: a hedge against stress concentration in marine holdfasts?
Philos Trans R Soc Lond B Biol Sci. 2002 Feb 28;357(1418):143-53. doi: 10.1098/rstb.2001.1025.

引用本文的文献

2
Mechanical Behavior of Octopus Egg Tethers Composed of Topologically Constrained, Tandemly Repeated EGF Domains.
Biomacromolecules. 2023 Jul 10;24(7):3032-3042. doi: 10.1021/acs.biomac.3c00088. Epub 2023 Jun 9.

本文引用的文献

2
Force distribution and multiscale mechanics in the mussel byssus.
Philos Trans R Soc Lond B Biol Sci. 2019 Oct 28;374(1784):20190202. doi: 10.1098/rstb.2019.0202. Epub 2019 Sep 9.
3
The Thiol-Rich Interlayer in the Shell/Core Architecture of Mussel Byssal Threads.
Langmuir. 2019 Dec 3;35(48):15985-15991. doi: 10.1021/acs.langmuir.9b01844. Epub 2019 Aug 23.
4
Intertidal exposure favors the soft-studded armor of adaptive mussel coatings.
Nat Commun. 2018 Aug 24;9(1):3424. doi: 10.1038/s41467-018-05952-5.
5
Influence of multi-cycle loading on the structure and mechanics of marine mussel plaques.
Soft Matter. 2017 Oct 18;13(40):7381-7388. doi: 10.1039/c7sm01299c.
6
Mussel adhesion - essential footwork.
J Exp Biol. 2017 Feb 15;220(Pt 4):517-530. doi: 10.1242/jeb.134056.
7
High Strength Underwater Bonding with Polymer Mimics of Mussel Adhesive Proteins.
ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7866-7872. doi: 10.1021/acsami.7b00270. Epub 2017 Feb 20.
8
Cooperative behavior of a sacrificial bond network and elastic framework in providing self-healing capacity in mussel byssal threads.
J Struct Biol. 2016 Dec;196(3):329-339. doi: 10.1016/j.jsb.2016.07.020. Epub 2016 Jul 29.
9
The mechanical role of metal ions in biogenic protein-based materials.
Angew Chem Int Ed Engl. 2014 Nov 3;53(45):12026-44. doi: 10.1002/anie.201404272. Epub 2014 Oct 9.
10
Mussels as a model system for integrative ecomechanics.
Ann Rev Mar Sci. 2015;7:443-69. doi: 10.1146/annurev-marine-010213-135049. Epub 2014 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验