Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, China.
Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China.
J Sci Food Agric. 2022 Sep;102(12):5321-5332. doi: 10.1002/jsfa.11886. Epub 2022 Apr 8.
Food grade Streptococcus thermophilus produces biological exopolysaccharides (EPSs) with great potential with respect to catering for higher health-promoting demands; however, how S. thermophilus regulates the biosynthesis of EPS is not completely understood, decelerating the application of these polymers. In our previous study, maltose, soy peptone and initial pH were three key factors of enhancing EPS yield in S. thermophilus CS6. Therefore, we aimed to investigate the regulating mechanisms of EPS biosynthesis in S. thermophilus CS6 via the method of comparative transcriptome and differential carbohydrate metabolism.
Soy peptone addition (58.6 g L ) and a moderate pH (6.5) contributed to a high bacterial biomass and a high EPS yield (407 mg L ). Maltose, soy peptone and initial pH greatly influenced lactose utilization in CS6. Soy peptone addition induced a high accumulation of mannose and arabinose in intracellular CS6, differential monosaccharide composition (mannose, glucose and arabinose) in EPS and high radical [2,2-diphenyl-1-picrylhydrazyl, superoxide and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging activities. Carbohydrate transportation, sugar activation and eps cluster-associated genes were differentially expressed to regulate EPS biosynthesis. Correlation analysis indicated high production of EPSs depended on high expression of lacS, galPMKUTE, pgm, gt2-5&4-1 and epsLM.
The production of antioxidant EPS in S. thermophilus CS6 depended on the regulation of galactose metabolism cluster and eps cluster. The present study recommends a new approach for enhancing EPS production by transcriptomic regulation for further food and health application of EPS. © 2022 Society of Chemical Industry.
食品级嗜热链球菌产生具有巨大潜力的生物胞外多糖(EPS),可以满足更高的促进健康的需求;然而,嗜热链球菌如何调节 EPS 的生物合成尚不完全清楚,这减缓了这些聚合物的应用。在我们之前的研究中,麦芽糖、大豆蛋白胨和初始 pH 是提高嗜热链球菌 CS6 中 EPS 产量的三个关键因素。因此,我们旨在通过比较转录组和差异碳水化合物代谢的方法研究 CS6 中 EPS 生物合成的调节机制。
添加大豆蛋白胨(58.6 g/L)和适度 pH(6.5)有助于提高细菌生物量和 EPS 产量(407 mg/L)。麦芽糖、大豆蛋白胨和初始 pH 极大地影响 CS6 中的乳糖利用。添加大豆蛋白胨诱导 CS6 中甘露糖和阿拉伯糖的大量积累,EPS 中差异的单糖组成(甘露糖、葡萄糖和阿拉伯糖)和高自由基[2,2-二苯基-1-苦基肼、超氧自由基和 2,2'-联氮-双(3-乙基苯并噻唑啉-6-磺酸)]清除活性。碳水化合物运输、糖激活和 eps 簇相关基因的差异表达调节 EPS 生物合成。相关性分析表明,EPSs 的高产量取决于 lacS、galPMKUTE、pgm、gt2-5&4-1 和 epsLM 的高表达。
CS6 中抗氧化 EPS 的生产取决于半乳糖代谢簇和 eps 簇的调节。本研究建议通过转录组调控来提高 EPS 产量的新方法,以进一步将 EPS 应用于食品和健康领域。© 2022 化学工业协会。