Suppr超能文献

逆转录病毒和丝状病毒表面包膜蛋白的深层时间结构进化。

Deep-Time Structural Evolution of Retroviral and Filoviral Surface Envelope Proteins.

机构信息

Department of Antibody Engineering, Genentech, South San Francisco, California, USA.

出版信息

J Virol. 2022 Apr 13;96(7):e0006322. doi: 10.1128/jvi.00063-22. Epub 2022 Mar 23.

Abstract

The retroviral surface envelope protein subunit (SU) mediates receptor binding and triggers membrane fusion by the transmembrane (TM) subunit. SU evolves rapidly under strong selective conditions, resulting in seemingly unrelated SU structures in highly divergent retroviruses. Structural modeling of the SUs of several retroviruses and related endogenous retroviral elements with AlphaFold 2 identifies a TM-proximal SU β-sandwich structure that has been conserved in the orthoretroviruses for at least 110 million years. The SU of orthoretroviruses diversified by the differential expansion of the β-sandwich core to form domains involved in virus-host interactions. The β-sandwich domain is also conserved in the SU equivalent GP of Ebola virus although with a significantly different orientation in the trimeric envelope protein structure relative to the β-sandwich of human immunodeficiency virus type 1 gp120, with significant evidence for divergent rather than convergent evolution. The unified structural view of orthoretroviral SU and filoviral GP identifies an ancient, structurally conserved, and evolvable domain underlying the structural diversity of orthoretroviral SU and filoviral GP. The structural relationships of SUs of retroviral groups are obscured by the high rate of sequence change of SU and the deep-time divergence of retroviral lineages. Previous data showed no structural or functional relationships between the SUs of type C gammaretroviruses and lentiviruses. A deeper understanding of structural relationships between the SUs of different retroviral lineages would allow the generalization of critical processes mediated by these proteins in host cell infection. Modeling of SUs with AlphaFold 2 reveals a conserved core domain underlying the structural diversity of orthoretroviral SUs. Definition of the conserved SU structural core allowed the identification of a homologue structure in the SU equivalent GP of filoviruses that most likely shares an origin, unifying the SU of orthoretroviruses and GP of filoviruses into a single protein family. These findings will allow an understanding of the structural basis for receptor-mediated membrane fusion mechanisms in a broad range of biomedically important retroviruses.

摘要

逆转录病毒表面包膜蛋白亚单位(SU)通过跨膜(TM)亚单位介导受体结合并触发膜融合。SU 在强烈的选择条件下快速进化,导致高度分化的逆转录病毒中出现看似无关的 SU 结构。使用 AlphaFold 2 对几种逆转录病毒及其相关内源性逆转录病毒元件的 SUs 进行结构建模,确定了一个靠近 TM 的 SU β-夹层结构,该结构在正逆转录病毒中至少保守了 1.1 亿年。正逆转录病毒的 SU 通过β-夹层核心的差异扩展多样化,形成参与病毒-宿主相互作用的结构域。β-夹层结构域也在埃博拉病毒的 SU 等价 GP 中保守,尽管在三聚体包膜蛋白结构中的取向与人类免疫缺陷病毒 1 gp120 的 β-夹层明显不同,有明显的证据表明是趋异进化而不是趋同进化。正逆转录病毒 SU 和丝状病毒 GP 的统一结构视图确定了一个古老的、结构保守的、可进化的结构域,为正逆转录病毒 SU 和丝状病毒 GP 的结构多样性提供了基础。逆转录病毒群 SU 的结构关系被 SU 的高序列变化率和逆转录病毒谱系的深时分化所掩盖。先前的数据表明,C 型γ逆转录病毒和慢病毒的 SU 之间没有结构或功能关系。对不同逆转录病毒谱系的 SU 之间的结构关系有更深入的了解,将允许对这些蛋白质在宿主细胞感染中介导的关键过程进行概括。使用 AlphaFold 2 对 SUs 进行建模揭示了正逆转录病毒 SUs 结构多样性下的保守核心域。保守 SU 结构核心的定义允许在丝状病毒的 SU 等价 GP 中识别同源结构,这很可能具有共同的起源,将正逆转录病毒的 SU 和丝状病毒的 GP 统一为一个单一的蛋白质家族。这些发现将允许理解广泛的具有重要生物医学意义的逆转录病毒中受体介导的膜融合机制的结构基础。

相似文献

1
Deep-Time Structural Evolution of Retroviral and Filoviral Surface Envelope Proteins.
J Virol. 2022 Apr 13;96(7):e0006322. doi: 10.1128/jvi.00063-22. Epub 2022 Mar 23.
2
Domain Organization of Lentiviral and Betaretroviral Surface Envelope Glycoproteins Modeled with AlphaFold.
J Virol. 2022 Jan 26;96(2):e0134821. doi: 10.1128/JVI.01348-21. Epub 2021 Oct 27.
8
Comprehensive functional analysis of N-linked glycans on Ebola virus GP1.
mBio. 2014 Jan 28;5(1):e00862-13. doi: 10.1128/mBio.00862-13.
10
Structure of the Core Postfusion Porcine Endogenous Retrovirus Fusion Protein.
mBio. 2022 Feb 22;13(1):e0292021. doi: 10.1128/mbio.02920-21. Epub 2022 Jan 25.

引用本文的文献

1
Receptor-recognition and antiviral mechanisms of retrovirus-derived human proteins.
Nat Struct Mol Biol. 2024 Sep;31(9):1368-1376. doi: 10.1038/s41594-024-01295-6. Epub 2024 Apr 26.
2
Using AlphaFold Predictions in Viral Research.
Curr Issues Mol Biol. 2023 Apr 21;45(4):3705-3732. doi: 10.3390/cimb45040240.
3

本文引用的文献

1
ColabFold: making protein folding accessible to all.
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
2
Domain Organization of Lentiviral and Betaretroviral Surface Envelope Glycoproteins Modeled with AlphaFold.
J Virol. 2022 Jan 26;96(2):e0134821. doi: 10.1128/JVI.01348-21. Epub 2021 Oct 27.
3
Highly accurate protein structure prediction for the human proteome.
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.
4
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
5
DALI and the persistence of protein shape.
Protein Sci. 2020 Jan;29(1):128-140. doi: 10.1002/pro.3749. Epub 2019 Nov 5.
6
Origins and evolutionary consequences of ancient endogenous retroviruses.
Nat Rev Microbiol. 2019 Jun;17(6):355-370. doi: 10.1038/s41579-019-0189-2.
7
An endogenous retroviral envelope syncytin and its cognate receptor identified in the viviparous placental lizard.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):E10991-E11000. doi: 10.1073/pnas.1714590114. Epub 2017 Nov 21.
8
Origin of the retroviruses: when, where, and how?
Curr Opin Virol. 2017 Aug;25:23-27. doi: 10.1016/j.coviro.2017.06.006. Epub 2017 Jun 30.
9
An Intact Retroviral Gene Conserved in Spiny-Rayed Fishes for over 100 My.
Mol Biol Evol. 2017 Mar 1;34(3):634-639. doi: 10.1093/molbev/msw262.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验