Suppr超能文献

肌肉致动器,而非弹簧,驱动人类最大努力的运动表现。

Muscle Actuators, Not Springs, Drive Maximal Effort Human Locomotor Performance.

机构信息

Neuromuscular & Biomechanics Laboratory, Beaver College of Health Sciences, Department of Health & Exercise Science, Appalachian State University, North Carolina, USA.

出版信息

J Sports Sci Med. 2021 Oct 1;20(4):766-777. doi: 10.52082/jssm.2021.766. eCollection 2021 Dec.

Abstract

The current investigation examined muscle-tendon unit kinematics and kinetics in human participants asked to perform a hopping task for maximal performance with variational preceding milieu. Twenty-four participants were allocated post-data collection into those participants with an average hop height of higher (HH) or lower (LH) than 0.1 m. Participants were placed on a customized sled at a 20º angle while standing on a force plate. Participants used their dominant ankle for all testing and their knee was immobilized and thus all movement involved only the ankle joint and corresponding propulsive unit (triceps surae muscle complex). Participants were asked to perform a maximal effort during a single dynamic countermovement hop (CMH) and drop hops from 10 cm (DH10) and 50 cm (DH50). Three-dimensional motion analysis was performed by utilizing an infrared camera VICON motion analysis system and a corresponding force plate. An ultrasound probe was placed on the triceps surae muscle complex for muscle fascicle imaging. HH hopped significantly higher in all hopping tasks in comparison to LH. In addition, the HH group concentric ankle work was significantly higher in comparison to LH during all of the hopping tasks. Active muscle work was significantly higher in HH in comparison to LH as well. Tendon work was not significantly different between HH and LH. Active muscle work was significantly correlated with hopping height (r = 0.97) across both groups and hopping tasks and contributed more than 50% of the total work. The data indicates that humans primarily use a motor-driven system and thus it is concluded that muscle actuators and not springs maximize performance in hopping locomotor tasks in humans.

摘要

当前的研究考察了人类参与者在执行最大性能跳跃任务时的肌肉-肌腱单元运动学和动力学,其中包括变化的前置环境。24 名参与者在数据收集后根据平均跳跃高度分配到较高(HH)或较低(LH)于 0.1 米的组别。参与者在定制雪橇上以 20°的角度站立在力板上。所有测试都使用参与者的优势脚踝,其膝盖被固定,因此所有运动仅涉及踝关节和相应的推进单元(小腿三头肌复合体)。参与者被要求在单次动态反向跳跃(CMH)和从 10 厘米(DH10)和 50 厘米(DH50)跳下的过程中进行最大努力。三维运动分析是通过使用红外摄像机 VICON 运动分析系统和相应的力板进行的。将超声探头放置在小腿三头肌复合体上进行肌肉束成像。与 LH 相比,HH 在所有跳跃任务中跳得更高。此外,与 LH 相比,在所有跳跃任务中,HH 组的向心踝部工作明显更高。与 LH 相比,HH 的主动肌肉工作也明显更高。跟腱工作在 HH 和 LH 之间没有显著差异。主动肌肉工作与跳跃高度显著相关(r = 0.97),跨越两个组和跳跃任务,占总工作的 50%以上。数据表明,人类主要使用电机驱动系统,因此可以得出结论,在人类跳跃运动任务中,肌肉执行器而不是弹簧最大限度地提高了性能。

相似文献

1
Muscle Actuators, Not Springs, Drive Maximal Effort Human Locomotor Performance.
J Sports Sci Med. 2021 Oct 1;20(4):766-777. doi: 10.52082/jssm.2021.766. eCollection 2021 Dec.
2
Gastrocnemius fascicle and achilles tendon length at the end of the eccentric phase in a single and multiple countermovement hop.
J Electromyogr Kinesiol. 2018 Feb;38:175-181. doi: 10.1016/j.jelekin.2017.12.006. Epub 2017 Dec 23.
3
Elevated Knee Joint Kinetics and Reduced Ankle Kinetics Are Present During Jogging and Hopping After Achilles Tendon Ruptures.
Am J Sports Med. 2017 Apr;45(5):1124-1133. doi: 10.1177/0363546516685055. Epub 2017 Feb 10.
4
Conditioning hops increase triceps surae muscle force and Achilles tendon strain energy in the stretch-shortening cycle.
Scand J Med Sci Sports. 2018 Jan;28(1):126-137. doi: 10.1111/sms.12870. Epub 2017 Apr 6.
5
Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex.
Eur J Appl Physiol. 2002 Mar;86(5):428-34. doi: 10.1007/s00421-001-0565-1. Epub 2002 Feb 5.
6
Stretch-Shortening Cycle Performance and Muscle-Tendon Properties in Dancers and Runners.
J Appl Biomech. 2021 Dec 1;37(6):547-555. doi: 10.1123/jab.2021-0094. Epub 2021 Nov 17.
7
Neuromechanical properties of the triceps surae in young and older adults.
Exp Gerontol. 2013 Nov;48(11):1147-55. doi: 10.1016/j.exger.2013.07.007. Epub 2013 Jul 22.
8
Long-term use of high-heeled shoes alters the neuromechanics of human walking.
J Appl Physiol (1985). 2012 Mar;112(6):1054-8. doi: 10.1152/japplphysiol.01402.2011. Epub 2012 Jan 12.
9
Neuromuscular mechanics and hopping training in elderly.
Eur J Appl Physiol. 2015 May;115(5):863-77. doi: 10.1007/s00421-014-3065-9. Epub 2014 Dec 6.
10
Isometric contractions reduce plantar flexor moment, Achilles tendon stiffness, and neuromuscular activity but remove the subsequent effects of stretch.
J Appl Physiol (1985). 2009 Oct;107(4):1181-9. doi: 10.1152/japplphysiol.00281.2009. Epub 2009 Jul 30.

引用本文的文献

2
Joint Coordination and Muscle-Tendon Interaction Differ Depending on The Level of Jumping Performance.
J Sports Sci Med. 2023 Jun 1;22(2):189-195. doi: 10.52082/jssm.2023.189. eCollection 2023 Jun.
3
Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost.
J Biomech. 2023 May;153:111585. doi: 10.1016/j.jbiomech.2023.111585. Epub 2023 Apr 13.

本文引用的文献

1
Millisecond Conformational Dynamics of Skeletal Myosin II Power Stroke Studied by High-Speed Atomic Force Microscopy.
ACS Nano. 2021 Feb 23;15(2):2229-2239. doi: 10.1021/acsnano.0c06820. Epub 2020 Dec 10.
3
Investigating Passive Muscle Mechanics With Biaxial Stretch.
Front Physiol. 2020 Aug 20;11:1021. doi: 10.3389/fphys.2020.01021. eCollection 2020.
4
The problem with skeletal muscle series elasticity.
BMC Biomed Eng. 2019 Dec 3;1:28. doi: 10.1186/s42490-019-0031-y. eCollection 2019.
5
Cross-Bridges and Sarcomeric Non-cross-bridge Structures Contribute to Increased Work in Stretch-Shortening Cycles.
Front Physiol. 2020 Jul 28;11:921. doi: 10.3389/fphys.2020.00921. eCollection 2020.
7
Latch-based control of energy output in spring actuated systems.
J R Soc Interface. 2020 Jul;17(168):20200070. doi: 10.1098/rsif.2020.0070. Epub 2020 Jul 22.
8
Evolution of a high-performance and functionally robust musculoskeletal system in salamanders.
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10445-10454. doi: 10.1073/pnas.1921807117. Epub 2020 Apr 27.
9
Titin: A Tunable Spring in Active Muscle.
Physiology (Bethesda). 2020 May 1;35(3):209-217. doi: 10.1152/physiol.00036.2019.
10
Non-linear Scaling of Passive Mechanical Properties in Fibers, Bundles, Fascicles and Whole Rabbit Muscles.
Front Physiol. 2020 Mar 20;11:211. doi: 10.3389/fphys.2020.00211. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验