Suppr超能文献

下肢动脉腔内血管重建术治疗外周动脉疾病后截肢风险预测的可解释机器学习。

Interpretable Machine Learning for the Prediction of Amputation Risk Following Lower Extremity Infrainguinal Endovascular Interventions for Peripheral Arterial Disease.

机构信息

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRB #290, Boston, MA, 02114, USA.

Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Cardiovasc Intervent Radiol. 2022 May;45(5):633-640. doi: 10.1007/s00270-022-03111-4. Epub 2022 Mar 23.

Abstract

PURPOSE

Severe peripheral artery disease (PAD) may result in lower extremity amputation or require multiple procedures to achieve limb salvage. Current prediction models for major amputation risk have had limited performance at the individual level. We developed an interpretable machine learning model that will allow clinicians to identify patients at risk of amputation and optimize treatment decisions for PAD patients.

METHODS

We utilized the American College of Surgeons National Surgical Quality Improvement Program database to collect preoperative clinical and laboratory information on 14,444 patients who underwent lower extremity endovascular procedures for PAD from 2011 to 2018. Using data from 2011 to 2017 for training and data from 2018 for testing, we developed a machine learning model to predict 30 day amputation in this patient population. We present performance metrics overall and stratified by race, sex, and age. We also demonstrate model interpretability using Gini importance and SHapley Additive exPlanations.

RESULTS

A random forest machine learning model achieved an area under the receiver-operator curve (AU-ROC) of 0.81. The most important features of the model were elective surgery designation, claudication, open wound/wound infection, white blood cell count, and albumin. The model performed equally well on white and non-white patients (Delong p-value = 0.189), males and females (Delong p-value = 0.572), and patients under age 65 and patients age 65 and older (Delong p-value = 0.704).

CONCLUSION

We present a machine learning model that predicts 30 day major amputation events in PAD patients undergoing lower extremity endovascular procedures. This model can optimize clinical decision-making for patients with PAD.

摘要

目的

严重的外周动脉疾病(PAD)可能导致下肢截肢,或需要多次手术才能实现肢体保留。目前,针对主要截肢风险的预测模型在个体水平上的表现有限。我们开发了一种可解释的机器学习模型,使临床医生能够识别有截肢风险的患者,并优化 PAD 患者的治疗决策。

方法

我们利用美国外科医师学会国家手术质量改进计划数据库,收集了 2011 年至 2018 年间 14444 例因 PAD 而行下肢血管腔内治疗的患者的术前临床和实验室信息。我们使用 2011 年至 2017 年的数据进行训练,使用 2018 年的数据进行测试,开发了一个机器学习模型来预测该患者群体的 30 天内截肢情况。我们总体报告了性能指标,并按种族、性别和年龄进行了分层。我们还使用基尼重要性和 Shapley 可加解释来展示模型的可解释性。

结果

随机森林机器学习模型的受试者工作特征曲线下面积(AU-ROC)为 0.81。模型最重要的特征是择期手术、跛行、开放性伤口/伤口感染、白细胞计数和白蛋白。该模型在白人和非白人患者、男性和女性患者、65 岁以下和 65 岁及以上的患者中表现同样良好(DeLong p 值=0.189)。

结论

我们提出了一种机器学习模型,可预测行下肢血管腔内治疗的 PAD 患者 30 天内的主要截肢事件。该模型可以优化 PAD 患者的临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验