Suppr超能文献

采用代谢组学和机器学习技术的新型合成大麻素定性筛选分析方法。

Towards a New Qualitative Screening Assay for Synthetic Cannabinoids Using Metabolomics and Machine Learning.

机构信息

Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.

Department of Forensic Imaging/Virtopsy, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.

出版信息

Clin Chem. 2022 Jun 1;68(6):848-855. doi: 10.1093/clinchem/hvac045.

Abstract

BACKGROUND

Synthetic cannabinoids (SCs) are steadily emerging on the drug market. To remain competitive in clinical or forensic toxicology, new screening strategies including high-resolution mass spectrometry (HRMS) are required. Machine learning algorithms can detect and learn chemical signatures in complex datasets and use them as a proxy to predict new samples. We propose a new screening tool based on a SC-specific change of the metabolome and a machine learning algorithm.

METHODS

Authentic human urine samples (n = 474), positive or negative for SCs, were used. These samples were measured with an untargeted metabolomics liquid chromatography (LC)-quadrupole time-of-flight-HRMS method. Progenesis QI software was used to preprocess the raw data. Following feature engineering, a random forest (RF) model was optimized in R using a 10-fold cross-validation method and a training set (n = 369). The performance of the model was assessed with a test (n = 50) and a verification (n = 55) set.

RESULTS

During RF optimization, 49 features, 200 trees, and 7 variables at each branching node were determined as most predictive. The optimized model accuracy, clinical sensitivity, clinical specificity, positive predictive value, and negative predictive value were 88.1%, 83.0%, 92.7%, 91.3%, and 85.6%, respectively. The test set was predicted with an accuracy of 88.0%, and the verification set provided evidence that the model was able to detect cannabinoid-specific changes in the metabolome.

CONCLUSIONS

An RF approach combined with metabolomics enables a novel screening strategy for responding effectively to the challenge of new SCs. Biomarkers identified by this approach may also be integrated in routine screening methods.

摘要

背景

合成大麻素 (SCs) 在毒品市场上不断涌现。为了在临床或法医毒理学中保持竞争力,需要包括高分辨率质谱 (HRMS) 在内的新筛选策略。机器学习算法可以检测和学习复杂数据集中的化学特征,并将其用作预测新样本的代理。我们提出了一种基于 SC 代谢组特异性变化和机器学习算法的新筛选工具。

方法

使用了来自真实人体尿液样本(n = 474),这些样本被检测为含有或不含有 SC。这些样本使用非靶向代谢组学液相色谱 (LC)-四极杆飞行时间-HRMS 方法进行测量。Progenesis QI 软件用于预处理原始数据。在特征工程之后,使用 10 折交叉验证方法和训练集(n = 369)在 R 中优化随机森林 (RF) 模型。使用测试集(n = 50)和验证集(n = 55)评估模型性能。

结果

在 RF 优化过程中,确定了 49 个特征、200 棵树和每个分支节点的 7 个变量作为最具预测性的特征。优化模型的准确性、临床灵敏度、临床特异性、阳性预测值和阴性预测值分别为 88.1%、83.0%、92.7%、91.3%和 85.6%。测试集的预测准确性为 88.0%,验证集证明该模型能够检测到代谢组中与大麻素特异性相关的变化。

结论

RF 方法与代谢组学相结合,为有效应对新 SC 带来的挑战提供了一种新的筛选策略。该方法鉴定的生物标志物也可以整合到常规筛选方法中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验