School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
Integr Comp Biol. 2022 Aug 13;62(1):21-29. doi: 10.1093/icb/icac011.
There is ample research demonstrating that temperature can have complex effects on biological processes, including the timing of when organisms respond to temperature; some responses occur rapidly while others require an extended exposure time. However, most of what we know about temperature effects comes from studies using constant temperature conditions, which are not reflective of natural, fluctuating temperatures. Species with temperature-dependent sex determination (TSD) present an ideal system to study the temporal aspects of the temperature response because prior research has established a number of temperature-responsive genes involved in TSD, albeit under constant temperatures. To investigate potential differences in timing of sexual development between constant and fluctuating incubation temperatures, we exposed Trachemys scripta embryos to two conditions that produce males (constant 26°C and 26 ± 3°C) and two that produce females (constant 31°C and 31 ± 3°C), and sampled embryonic gonads for gene expression analysisvia qPCR. We analyzed three genes involved in testis differentiation (Kdm6b,Dmrt1, andSox9) and two genes involved in ovary differentiation (Foxl2andCyp19A1). Results show that Kdm6b expression was significantly lower under fluctuating temperatures compared to constant temperatures. Foxl2 and Cyp19A1 expression were also lower under fluctuating temperatures, but not at all stages of development. These results suggest that constant temperatures caused increases in both Foxl2 and Cyp19A1 expression earlier (developmental stage 20) than fluctuating temperatures (stages 22 and 23). Dmrt1 and Sox9 expression did not differ between constant and fluctuating temperatures. These results highlight that not all genes in a temperature-dependent process respond to temperature in the same manner. Whether there are functional consequences of this variation remains to be determined.
有大量研究表明,温度对生物过程会产生复杂的影响,包括生物体对温度做出反应的时间;有些反应发生得很快,而有些则需要较长的暴露时间。然而,我们对温度影响的了解大多来自于使用恒温条件的研究,而这些研究并不能反映自然波动的温度。具有温度依赖性性别决定(TSD)的物种提供了一个研究温度反应时间方面的理想系统,因为之前的研究已经确定了一些与 TSD 相关的温度响应基因,尽管是在恒温条件下。为了研究恒温和波动孵化温度下性发育时间的潜在差异,我们将 Trachemys scripta 胚胎暴露于两种产生雄性的条件(恒定 26°C 和 26 ± 3°C)和两种产生雌性的条件(恒定 31°C 和 31 ± 3°C)中,并通过 qPCR 对胚胎性腺进行基因表达分析。我们分析了三个参与睾丸分化的基因(Kdm6b、Dmrt1 和 Sox9)和两个参与卵巢分化的基因(Foxl2 和 Cyp19A1)。结果表明,与恒温相比,波动温度下 Kdm6b 的表达明显降低。Foxl2 和 Cyp19A1 的表达在波动温度下也较低,但并非在所有发育阶段都是如此。这些结果表明,恒温导致 Foxl2 和 Cyp19A1 的表达更早(发育阶段 20)增加,而波动温度则在发育阶段 22 和 23 时增加。Dmrt1 和 Sox9 的表达在恒温与波动温度之间没有差异。这些结果表明,温度依赖性过程中的并非所有基因都以相同的方式对温度做出反应。这种变化是否有功能后果还有待确定。