Kharazmi Omid, Balakrishnan Narayanaswamy, Jamali Hassan
Department of Statistics, Faculty of Mathematical Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan P.O. Box 518, Iran.
Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4L8, Canada.
Entropy (Basel). 2022 Feb 27;24(3):341. doi: 10.3390/e24030341.
In this work, we define cumulative residual -Fisher (CRQF) information measures for the survival function (SF) of the underlying random variables as well as for the model parameter. We also propose -hazard rate (QHR) function via -logarithmic function as a new extension of hazard rate function. We show that CRQF information measure can be expressed in terms of the QHR function. We define further generalized cumulative residual χ2 divergence measures between two SFs. We then examine the cumulative residual -Fisher information for two well-known mixture models, and the corresponding results reveal some interesting connections between the cumulative residual -Fisher information and the generalized cumulative residual χ2 divergence measures. Further, we define Jensen-cumulative residual χ2 (JCR-χ2) measure and a parametric version of the Jensen-cumulative residual Fisher information measure and then discuss their properties and inter-connections. Finally, for illustrative purposes, we examine a real example of image processing and provide some numerical results in terms of the CRQF information measure.
在这项工作中,我们为基础随机变量的生存函数(SF)以及模型参数定义了累积残差 - 费希尔(CRQF)信息度量。我们还通过 - 对数函数提出了 - 危险率(QHR)函数,作为危险率函数的一种新扩展。我们表明,CRQF信息度量可以用QHR函数来表示。我们进一步定义了两个SF之间的广义累积残差χ2散度度量。然后,我们研究了两个著名混合模型的累积残差 - 费希尔信息,相应结果揭示了累积残差 - 费希尔信息与广义累积残差χ2散度度量之间的一些有趣联系。此外,我们定义了詹森 - 累积残差χ2(JCR - χ2)度量以及詹森 - 累积残差费希尔信息度量的参数化版本,然后讨论它们的性质和相互联系。最后,为了说明目的,我们研究了一个图像处理的实际例子,并根据CRQF信息度量提供了一些数值结果。