College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
Int J Mol Sci. 2022 Mar 13;23(6):3104. doi: 10.3390/ijms23063104.
Silica nanoparticles (SNPs) can cause abnormal spermatogenesis in male reproductive toxicity. However, the toxicity and toxicological mechanisms of SNPs in testosterone synthesis and secretion in Leydig cells are not well known. Therefore, this study aimed to determine the effect and molecular mechanism of low doses of SNPs in testosterone production in Leydig cells. For this, mouse primary Leydig cells (PLCs) were exposed to 100 nm Stöber nonporous spherical SNPs. We observed significant accumulation of SNPs in the cytoplasm of PLCs via transmission electron microscopy (TEM). CCK-8 and flow cytometry assays confirmed that low doses (50 and 100 μg/mL) of SNPs had no significant effect on cell viability and apoptosis, whereas high doses (more than 200 μg/mL) decreased cell viability and increased cell apoptosis in PLCs. Monodansylcadaverine (MDC) staining showed that SNPs caused the significant accumulation of autophagosomes in the cytoplasm of PLCs. SNPs activated autophagy by upregulating microtubule-associated protein light chain 3 (LC3-II) and BCL-2-interacting protein (BECLIN-1) levels, in addition to downregulating sequestosome 1 (SQSTM1/P62) level at low doses. In addition, low doses of SNPs enhanced testosterone secretion and increased steroidogenic acute regulatory protein (StAR) expression. SNPs combined with rapamycin (RAP), an autophagy activator, enhanced testosterone production and increased StAR expression, whereas SNPs combined with 3-methyladenine (3-MA) and chloroquine (CQ), autophagy inhibitors, had an opposite effect. Furthermore, BECLIN-1 depletion inhibited testosterone production and StAR expression. Altogether, our results demonstrate that low doses of SNPs enhanced testosterone secretion via the activation of autophagy in PLCs.
硅纳米颗粒 (SNPs) 可导致雄性生殖毒性中的异常精子发生。然而,SNPs 在睾丸间质细胞中睾酮合成和分泌中的毒性和毒理学机制尚不清楚。因此,本研究旨在确定低剂量 SNPs 对睾丸间质细胞中睾酮产生的影响及其分子机制。为此,我们将小鼠原代睾丸间质细胞 (PLCs) 暴露于 100nm 斯托伯无孔球形 SNPs 中。通过透射电子显微镜 (TEM) 观察到 SNPs 在 PLC 细胞质中的明显积累。CCK-8 和流式细胞术检测证实,低剂量 (50 和 100μg/mL) 的 SNPs 对细胞活力和凋亡没有显著影响,而高剂量 (高于 200μg/mL) 则降低了 PLC 中的细胞活力并增加了细胞凋亡。单丹磺酰尸胺 (MDC) 染色显示 SNPs 导致 PLC 细胞质中自噬体的大量积累。SNPs 通过上调微管相关蛋白轻链 3 (LC3-II) 和 BCL-2 相互作用蛋白 (BECLIN-1) 水平激活自噬,同时在低剂量时下调自噬溶酶体相关蛋白 1 (SQSTM1/P62) 水平。此外,低剂量的 SNPs 增强了睾酮的分泌并增加了类固醇急性调节蛋白 (StAR) 的表达。SNPs 与自噬激活剂雷帕霉素 (RAP) 结合增强了睾酮的产生并增加了 StAR 的表达,而 SNPs 与自噬抑制剂 3-甲基腺嘌呤 (3-MA) 和氯喹 (CQ) 结合则产生相反的效果。此外,BECLIN-1 耗竭抑制了睾酮的产生和 StAR 的表达。总之,我们的结果表明,低剂量的 SNPs 通过激活 PLC 中的自噬增强了睾酮的分泌。