Suppr超能文献

使用基于混淆的生成对抗网络减轻智能电网中的消费者隐私泄露问题。

Mitigating consumer privacy breach in smart grid using obfuscation-based generative adversarial network.

作者信息

Desai Sanket, Sabar Nasser R, Alhadad Rabei, Mahmood Abdun, Chilamkurti Naveen

机构信息

Department of Computer Science & I.T., La Trobe University, Melbourne, VIC 3083, Australia.

出版信息

Math Biosci Eng. 2022 Jan 24;19(4):3350-3368. doi: 10.3934/mbe.2022155.

Abstract

Smart meters allow real-time monitoring and collection of power consumption data of a consumer's premise. With the worldwide integration of smart meters, there has been a substantial rise in concerns regarding threats to consumer privacy. The exposed fine-grained power consumption data results in behaviour leakage by revealing the end-user's home appliance usage information. Previously, researchers have proposed approaches to alter data using perturbation, aggregation or hide identifiers using anonymization. Unfortunately, these techniques suffer from various limitations. In this paper, we propose a privacy preserving architecture for fine-grained power data in a smart grid. The proposed architecture uses generative adversarial network (GAN) and an obfuscator to generate a synthetic timeseries. The proposed architecture enables to replace the existing appliance signature with appliances that are not active during that period while ensuring minimum energy difference between the ground truth and the synthetic timeseries. We use real-world dataset containing power consumption readings for our experiment and use non-intrusive load monitoring (NILM) algorithms to show that our approach is more effective in preserving the privacy level of a consumer's power consumption data.

摘要

智能电表允许实时监测和收集用户房屋的电力消耗数据。随着智能电表在全球范围内的普及,人们对消费者隐私受到威胁的担忧大幅增加。暴露的细粒度电力消耗数据通过揭示终端用户的家电使用信息导致行为泄露。此前,研究人员提出了使用扰动、聚合来改变数据或使用匿名化隐藏标识符的方法。不幸的是,这些技术存在各种局限性。在本文中,我们提出了一种用于智能电网中细粒度电力数据的隐私保护架构。所提出的架构使用生成对抗网络(GAN)和一个混淆器来生成合成时间序列。所提出的架构能够用在该时间段内不活动的电器替换现有的电器特征,同时确保真实数据与合成时间序列之间的能量差异最小。我们使用包含电力消耗读数的真实世界数据集进行实验,并使用非侵入式负载监测(NILM)算法来表明我们的方法在保护消费者电力消耗数据的隐私级别方面更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验