Zaytseva Sofya, Shaw Leah B, Shi Junping, Kirwan Matthew L, Lipcius Romuald N
Department of Mathematics, University of Georgia, Athens, GA 30602, USA.
Department of Mathematics, William & Mary, Williamsburg, VA 23187, USA.
J Theor Biol. 2022 Jun 21;543:111102. doi: 10.1016/j.jtbi.2022.111102. Epub 2022 Mar 25.
Spatial self-organization, a common feature of multi-species communities, can provide important insights into ecosystem structure and resilience. As environmental conditions gradually worsen (e.g., resource depletion, erosion intensified by storms, drought), some ecological systems collapse to an irreversible state once a tipping point is reached. Spatial patterning may be one way for them to cope with such changes. We use a mathematical model to describe self-organization of an eroding marsh shoreline based on three-way interactions between sediment volume and two ecosystem engineers - smooth cordgrass Spartina alterniflora and ribbed mussels Geukensia demissa. Our model indicates that scale-dependent interactions between multiple ecosystem engineers drive the self-organization of eroding marsh edges and regulate the spatial scale of shoreline morphology. Spatial self-organization of the marsh edge increases the system's productivity, allows it to withstand erosion, and delays degradation that otherwise would occur in the absence of strong species interactions. Further, changes in wavelength and variance of the spatial patterns give insight into marsh recession. Finally, we find that the presence of mussels in the system modulates the spatial scale of the patterns, generates patterns with shorter wavelengths, and allows the system to tolerate a greater level of erosion. Although previous studies suggest that self-organization can emerge from local interactions and can result in increased ecosystem persistence and stability in various ecosystems, our findings extend these concepts to coastal salt marshes, emphasizing the importance of the ecosystem engineers, smooth cordgrass and ribbed mussels, and demonstrating the potential value of self-organization for ecosystem management and restoration.
空间自组织是多物种群落的一个共同特征,它可以为生态系统结构和恢复力提供重要见解。随着环境条件逐渐恶化(例如,资源枯竭、风暴加剧侵蚀、干旱),一旦达到临界点,一些生态系统就会崩溃到不可逆状态。空间格局可能是它们应对此类变化的一种方式。我们使用一个数学模型,基于沉积物量与两种生态系统工程师——光鳞草(互花米草)和肋贻贝(Geukensia demissa)之间的三方相互作用,来描述侵蚀性沼泽海岸线的自组织。我们的模型表明,多个生态系统工程师之间的尺度依赖相互作用驱动了侵蚀性沼泽边缘的自组织,并调节了海岸线形态的空间尺度。沼泽边缘的空间自组织提高了系统的生产力,使其能够抵御侵蚀,并延缓了在缺乏强烈物种相互作用时本会发生的退化。此外,空间格局的波长和方差变化为沼泽衰退提供了见解。最后,我们发现系统中贻贝的存在调节了格局的空间尺度,产生了波长更短的格局,并使系统能够耐受更高程度的侵蚀。尽管先前的研究表明自组织可以从局部相互作用中出现,并能导致各种生态系统中生态系统持久性和稳定性的增加,但我们的研究结果将这些概念扩展到了沿海盐沼,强调了生态系统工程师光鳞草和肋贻贝的重要性,并证明了自组织在生态系统管理和恢复方面的潜在价值。