Suppr超能文献

用于分析高维动态神经数据的直接判别解码器模型

Direct Discriminative Decoder Models for Analysis of High-Dimensional Dynamical Neural Data.

作者信息

Rezaei Mohammad R, Hadjinicolaou Alex E, Cash Sydney S, Eden Uri T, Yousefi Ali

机构信息

Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9.

Krembil Research Institute, University Health Network, Toronto, ON M5T 2S8.

出版信息

Neural Comput. 2022 Apr 15;34(5):1100-1135. doi: 10.1162/neco_a_01491.

Abstract

With the accelerated development of neural recording technology over the past few decades, research in integrative neuroscience has become increasingly reliant on data analysis methods that are scalable to high-dimensional recordings and computationally tractable. Latent process models have shown promising results in estimating the dynamics of cognitive processes using individual models for each neuron's receptive field. However, scaling these models to work on high-dimensional neural recordings remains challenging. Not only is it impractical to build receptive field models for individual neurons of a large neural population, but most neural data analyses based on individual receptive field models discard the local history of neural activity, which has been shown to be critical in the accurate inference of the underlying cognitive processes. Here, we propose a novel, scalable latent process model that can directly estimate cognitive process dynamics without requiring precise receptive field models of individual neurons or brain nodes. We call this the direct discriminative decoder (DDD) model. The DDD model consists of (1) a discriminative process that characterizes the conditional distribution of the signal to be estimated, or state, as a function of both the current neural activity and its local history, and (2) a state transition model that characterizes the evolution of the state over a longer time period. While this modeling framework inherits advantages of existing latent process modeling methods, its computational cost is tractable. More important, the solution can incorporate any information from the history of neural activity at any timescale in computing the estimate of the state process. There are many choices in building the discriminative process, including deep neural networks or gaussian processes, which adds to the flexibility of the framework. We argue that these attributes of the proposed methodology, along with its applicability to different modalities of neural data, make it a powerful tool for high-dimensional neural data analysis. We also introduce an extension of these methods, called the discriminative-generative decoder (DGD). The DGD includes both discriminative and generative processes in characterizing observed data. As a result, we can combine physiological correlates like behavior with neural data to better estimate underlying cognitive processes. We illustrate the methods, including steps for inference and model identification, and demonstrate applications to multiple data analysis problems with high-dimensional neural recordings. The modeling results demonstrate the computational and modeling advantages of the DDD and DGD methods.

摘要

在过去几十年中,随着神经记录技术的加速发展,整合神经科学的研究越来越依赖于可扩展到高维记录且计算上易于处理的数据分析方法。潜在过程模型在使用针对每个神经元感受野的个体模型来估计认知过程的动态方面已显示出有前景的结果。然而,将这些模型扩展到适用于高维神经记录仍然具有挑战性。不仅为大量神经群体中的单个神经元构建感受野模型不切实际,而且大多数基于单个感受野模型的神经数据分析会丢弃神经活动的局部历史,而这已被证明对于准确推断潜在的认知过程至关重要。在此,我们提出一种新颖的、可扩展的潜在过程模型,它无需单个神经元或脑节点的精确感受野模型就能直接估计认知过程动态。我们将其称为直接判别解码器(DDD)模型。DDD模型由两部分组成:(1)一个判别过程,它将待估计信号或状态的条件分布表征为当前神经活动及其局部历史的函数;(2)一个状态转移模型,它表征状态在更长时间段内的演变。虽然这个建模框架继承了现有潜在过程建模方法的优点,但其计算成本是易于处理的。更重要的是,该解决方案在计算状态过程的估计值时可以纳入任何时间尺度上神经活动历史的任何信息。在构建判别过程时有许多选择,包括深度神经网络或高斯过程,这增加了框架的灵活性。我们认为所提出方法的这些特性,连同其对不同神经数据模态的适用性,使其成为高维神经数据分析的有力工具。我们还介绍了这些方法的一种扩展,称为判别生成解码器(DGD)。DGD在表征观测数据时同时包含判别和生成过程。因此,我们可以将行为等生理关联与神经数据相结合,以更好地估计潜在的认知过程。我们阐述了这些方法,包括推理和模型识别步骤,并展示了它们在高维神经记录的多个数据分析问题中的应用。建模结果证明了DDD和DGD方法在计算和建模方面的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验