Suppr超能文献

病毒的系统发育地理学和进化史;时间尺度的问题?

Phylogeographical and evolutionary history of virus; a question of timescales?

作者信息

Bergna Annalisa, Ventura Carla Della, Marzo Rossella, Ciccozzi Massimo, Galli Massimo, Zehender Gianguglielmo, Lai Alessia

机构信息

Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Italy.

Unit of Clinical Pathology and Microbiology, University Campus Bio-Medico of Rome, Italy.

出版信息

Infez Med. 2022 Mar 1;30(1):109-118. doi: 10.53854/liim-3001-13. eCollection 2022.

Abstract

Aim of this study was to reconstruct the phylogeography of virus (VARV) in the XX century, using 47 VARV whole genome sequences available in public databases, through two different methods for ancestral character reconstruction: a frequently used Bayesian framework and a fast maximum-likelihood (ML) based method. The substitution rate of the whole VARV genome was estimated to be between 6.7×10 and 1.1×10 substitutions/site/year. Both ML and Bayesian methods gave similar trees topology, showing two distinct monophyletic groups: one (known as P1) including the great part of and the second (P2) including West African and American () isolates and close evolutionary rate estimations, between 6.73×10 and 1.1×10 for the whole genome. The phylogeographical reconstruction of P1 suggested that the common ancestor of the circulating in the Old World between the 1940s and the 1970s most probably originated in the Far East in the first decades of the XX century, and then spread to Indian subcontinent in the 1920s. India represented a center of further spread of VARV to eastern Africa in the 1940s and to the Middle East in the 1960s. The phylogeographic scenario obtained by the maximum-likelihood based method was congruent with that obtained by Bayesian framework, but the analysis was faster indicating the usefulness of this method in the analyses of large viral genomes. Our results may help to explain the controversial reconstructions of the history of VARV obtained using long or short timescale for calibration.

摘要

本研究的目的是利用公共数据库中现有的47个天花病毒(VARV)全基因组序列,通过两种不同的祖先特征重建方法:一种常用的贝叶斯框架和一种基于快速最大似然(ML)的方法,来重建20世纪天花病毒的系统地理学。天花病毒全基因组的替换率估计在6.7×10⁻⁶和1.1×10⁻⁶替换/位点/年之间。最大似然法和贝叶斯法都给出了相似的树形拓扑结构,显示出两个不同的单系类群:一个(称为P1)包括大部分亚洲分离株,另一个(P2)包括西非和美洲(巴西)分离株,并且全基因组的进化速率估计相近,在6.73×10⁻⁶和1.1×10⁻⁶之间。P1的系统地理学重建表明,20世纪40年代至70年代在旧世界传播的天花病毒的共同祖先很可能起源于20世纪头几十年的远东地区,然后在20世纪20年代传播到印度次大陆。印度是天花病毒在20世纪40年代进一步传播到东非以及在20世纪60年代传播到中东的一个中心。基于最大似然法获得的系统地理学情况与通过贝叶斯框架获得的情况一致,但分析速度更快,表明该方法在分析大型病毒基因组方面的有用性。我们的结果可能有助于解释使用长或短时间尺度进行校准所获得的天花病毒历史的有争议的重建。

相似文献

1
Phylogeographical and evolutionary history of virus; a question of timescales?
Infez Med. 2022 Mar 1;30(1):109-118. doi: 10.53854/liim-3001-13. eCollection 2022.
2
Bayesian reconstruction of the evolutionary history and cross-species transition of variola virus and orthopoxviruses.
J Med Virol. 2018 Jun;90(6):1134-1141. doi: 10.1002/jmv.25055. Epub 2018 Mar 12.
3
The origin of the variola virus.
Viruses. 2015 Mar 10;7(3):1100-12. doi: 10.3390/v7031100.
4
On the origin of smallpox: correlating variola phylogenics with historical smallpox records.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15787-92. doi: 10.1073/pnas.0609268104. Epub 2007 Sep 27.
5
17 Century Variola Virus Reveals the Recent History of Smallpox.
Curr Biol. 2016 Dec 19;26(24):3407-3412. doi: 10.1016/j.cub.2016.10.061. Epub 2016 Dec 8.
6
[Molecular evolution of poxviruses].
Genetika. 2008 Aug;44(8):1029-44.
7
Re-Assembly and Analysis of an Ancient Variola Virus Genome.
Viruses. 2017 Sep 8;9(9):253. doi: 10.3390/v9090253.
8
Variola virus genome sequenced from an eighteenth-century museum specimen supports the recent origin of smallpox.
Philos Trans R Soc Lond B Biol Sci. 2020 Nov 23;375(1812):20190572. doi: 10.1098/rstb.2019.0572. Epub 2020 Oct 5.
9
Spatial and temporal dynamics of hepatitis B virus D genotype in Europe and the Mediterranean Basin.
PLoS One. 2012;7(5):e37198. doi: 10.1371/journal.pone.0037198. Epub 2012 May 25.

引用本文的文献

本文引用的文献

2
A Fast Likelihood Method to Reconstruct and Visualize Ancestral Scenarios.
Mol Biol Evol. 2019 Sep 1;36(9):2069-2085. doi: 10.1093/molbev/msz131.
3
Bayesian reconstruction of the evolutionary history and cross-species transition of variola virus and orthopoxviruses.
J Med Virol. 2018 Jun;90(6):1134-1141. doi: 10.1002/jmv.25055. Epub 2018 Mar 12.
4
40 Years without Smallpox.
Acta Naturae. 2017 Oct-Dec;9(4):4-12.
5
UFBoot2: Improving the Ultrafast Bootstrap Approximation.
Mol Biol Evol. 2018 Feb 1;35(2):518-522. doi: 10.1093/molbev/msx281.
6
ModelFinder: fast model selection for accurate phylogenetic estimates.
Nat Methods. 2017 Jun;14(6):587-589. doi: 10.1038/nmeth.4285. Epub 2017 May 8.
7
Smallpox as an actual biothreat: lessons learned from its outbreak in ex-Yugoslavia in 1972.
Ann Ist Super Sanita. 2016 Oct-Dec;52(4):587-597. doi: 10.4415/ANN_16_04_21.
8
17 Century Variola Virus Reveals the Recent History of Smallpox.
Curr Biol. 2016 Dec 19;26(24):3407-3412. doi: 10.1016/j.cub.2016.10.061. Epub 2016 Dec 8.
9
Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen).
Virus Evol. 2016 Apr 9;2(1):vew007. doi: 10.1093/ve/vew007. eCollection 2016 Jan.
10
Fast Dating Using Least-Squares Criteria and Algorithms.
Syst Biol. 2016 Jan;65(1):82-97. doi: 10.1093/sysbio/syv068. Epub 2015 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验