Garab Győző, Yaguzhinsky Lev S, Dlouhý Ondřej, Nesterov Semen V, Špunda Vladimír, Gasanoff Edward S
Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; Department of Physics, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic.
Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; Institute of Cytochemistry and Molecular Pharmacology, 115404 Moscow, Russia.
Prog Lipid Res. 2022 Apr;86:101163. doi: 10.1016/j.plipres.2022.101163. Epub 2022 Mar 26.
The 'standard' fluid-mosaic membrane model can provide a framework for the operation of the photosynthetic and respiratory electron transport systems, the generation of the proton motive force (pmf) and its utilization for ATP synthesis according to the chemiosmotic theory. However, this model, with the bilayer organization of all lipid molecules, assigns no function to non-bilayer lipids - while in recent years it became clear that the two fundamental energy transducing membranes of the biosphere, chloroplast thylakoid membranes (TMs) and inner mitochondrial membranes (IMMs), contain large amounts of non-bilayer (non-lamellar) lipid phases. In this review, we summarize our understanding on the role of non-lamellar phases in TMs and IMMs: (i) We propose that for these membrane vesicles the dynamic exchange model (DEM) provides a more suitable framework than the 'standard' model; DEM complements the 'standard' model by assuming the co-existence of bilayer and non-bilayer phases and their interactions, which contribute to the structural dynamics of the membrane systems and safe-guard the membranes' high protein:lipid ratios. (ii) Non-bilayer phases play pivotal roles in membrane fusion and intermembrane lipid exchanges - essential processes in the self-assembly of these highly folded intricate membranes. (iii) The photoprotective, lipocalin-like lumenal enzyme, violaxanthin de-epoxidase, in its active state requires the presence of non-bilayer lipid phase. (iv) Cardiotoxins, water-soluble polypeptides, induce non-bilayer phases in mitochondria. (v) ATP synthesis, in mammalian heart IMMs, is positively correlated with the amount of non-bilayer packed lipids with restricted mobility. (vi) The hypothesized sub-compartments, due to non-lamellar phases, are proposed to enhance the utilization of pmf and might contribute to the recently documented functional independence of individual cristae within the same mitochondrion. Further research is needed to identify and characterize the structural entities associated with the observed non-bilayer phases; and albeit fundamental questions remain to be elucidated, non-lamellar lipid phases should be considered on a par with the bilayer phase, with which they co-exist in functional TMs and IMMs.
“标准”的流体镶嵌膜模型可以为光合和呼吸电子传递系统的运作、质子动力(pmf)的产生以及根据化学渗透理论将其用于ATP合成提供一个框架。然而,这个所有脂质分子都呈双层组织的模型并未赋予非双层脂质任何功能——而近年来人们逐渐清楚地认识到,生物圈中的两个基本能量转换膜,即叶绿体类囊体膜(TMs)和线粒体内膜(IMMs),含有大量的非双层(非片层)脂质相。在这篇综述中,我们总结了对非片层相在TMs和IMMs中作用的理解:(i)我们提出,对于这些膜泡而言,动态交换模型(DEM)提供了一个比“标准”模型更合适的框架;DEM通过假设双层相和非双层相的共存及其相互作用对“标准”模型进行补充,这些相互作用有助于膜系统的结构动态变化并维持膜的高蛋白:脂质比。(ii)非双层相在膜融合和膜间脂质交换中起关键作用——这些过程对于这些高度折叠的复杂膜的自组装至关重要。(iii)光保护的、类脂质运载蛋白的腔内膜酶紫黄质脱环氧化酶,在其活性状态下需要非双层脂质相的存在。(iv)心脏毒素,即水溶性多肽,可在线粒体中诱导非双层相的形成。(v)在哺乳动物心脏的IMMs中,ATP合成与流动性受限的非双层堆积脂质的量呈正相关。(vi)由于非片层相而假设的亚区室,被认为可提高pmf的利用率,并可能有助于最近记录的同一线粒体内单个嵴的功能独立性。需要进一步的研究来识别和表征与观察到的非双层相相关的结构实体;尽管仍有一些基本问题有待阐明,但非片层脂质相应与双层相同等看待,它们在功能性TMs和IMMs中共同存在。