Suppr超能文献

人工智能辅助分期在巴雷特食管癌中的应用。

Artificial intelligence-assisted staging in Barrett's carcinoma.

机构信息

Department of Gastroenterology, Frankfurt University Hospital, Frankfurt, Germany.

Department of Gastroenterology, Sana Klinikum GmbH Offenbach, Offenbach, Germany.

出版信息

Endoscopy. 2022 Dec;54(12):1191-1197. doi: 10.1055/a-1811-9407. Epub 2022 Mar 30.

Abstract

BACKGROUND

Artificial intelligence (AI) is increasingly being used to detect neoplasia and interpret endoscopic images. The T stage of Barrett's carcinoma is a major criterion for subsequent treatment decisions. Although endoscopic ultrasound is still the standard for preoperative staging, its value is debatable. Novel tools are required to assist with staging, to optimize results. This study aimed to investigate the accuracy of T stage of Barrett's carcinoma by an AI system based on endoscopic images.

METHODS

1020 images (minimum one per patient, maximum three) from 577 patients with Barrett's adenocarcinoma were used for training and internal validation of a convolutional neural network. In all, 821 images were selected to train the model and 199 images were used for validation.

RESULTS

AI recognized Barrett's mucosa without neoplasia with an accuracy of 85 % (95 %CI 82.7-87.1). Mucosal cancer was identified with a sensitivity of 72 % (95 %CI 67.5-76.4), specificity of 64 % (95 %CI 60.0-68.4), and accuracy of 68 % (95 %CI 64.6-70.7). The sensitivity, specificity, and accuracy for early Barrett's neoplasia < T1b sm2 were 57 % (95 %CI 51.8-61.0), 77 % (95 %CI 72.3-80.2), and 67 % (95 %CI 63.4-69.5), respectively. More advanced stages (T3/T4) were diagnosed correctly with a sensitivity of 71 % (95 %CI 65.1-76.7) and specificity of 73 % (95 %CI 69.7-76.5). The overall accuracy was 73 % (95 %CI 69.6-75.5).

CONCLUSIONS

The AI system identified esophageal cancer with high accuracy, suggesting its potential to assist endoscopists in clinical decision making.

摘要

背景

人工智能(AI)越来越多地被用于检测肿瘤和解释内窥镜图像。巴雷特癌的 T 分期是后续治疗决策的主要标准。尽管内镜超声仍然是术前分期的标准,但它的价值存在争议。需要新的工具来协助分期,以优化结果。本研究旨在通过基于内窥镜图像的 AI 系统来研究巴雷特癌 T 分期的准确性。

方法

共使用 577 例巴雷特腺癌患者的 1020 张图像(每个患者至少一张,最多三张)进行卷积神经网络的训练和内部验证。共选择 821 张图像进行模型训练,199 张图像进行验证。

结果

AI 对无肿瘤的巴雷特黏膜的识别准确率为 85%(95%CI 82.7-87.1)。黏膜癌的识别灵敏度为 72%(95%CI 67.5-76.4),特异性为 64%(95%CI 60.0-68.4),准确率为 68%(95%CI 64.6-70.7)。早期巴雷特肿瘤< T1b sm2 的灵敏度、特异性和准确率分别为 57%(95%CI 51.8-61.0)、77%(95%CI 72.3-80.2)和 67%(95%CI 63.4-69.5)。更晚期的阶段(T3/T4)的诊断灵敏度为 71%(95%CI 65.1-76.7),特异性为 73%(95%CI 69.7-76.5)。总体准确率为 73%(95%CI 69.6-75.5)。

结论

该 AI 系统识别食管癌的准确率较高,提示其有可能辅助内镜医生做出临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验