Labandeira Carmen M, Pedrosa Maria A, Suarez-Quintanilla Juan A, Cortes-Ayaso María, Labandeira-García José Luis, Rodríguez-Pérez Ana I
Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain.
Research Center for Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain.
Front Med (Lausanne). 2022 Mar 9;9:840662. doi: 10.3389/fmed.2022.840662. eCollection 2022.
We previously showed that angiotensin type-1 receptor and ACE2 autoantibodies (AT1-AA, ACE2-AA) are associated with COVID-19 severity. Our aim is to find correlations of these autoantibodies with routine biochemical parameters that allow an initial classification of patients.
In an initial cohort of 119 COVID-19 patients, serum AT1-AA and ACE2-AA concentrations were obtained within 24 h after diagnosis. In 50 patients with a complete set of routine biochemical parameters, clinical data and disease outcome information, a Random Forest algorithm was used to select prognostic indicators, and the Spearman coefficient was used to analyze correlations with AT1-AA, ACE2-AA.
Hemoglobin, lactate dehydrogenase and procalcitonin were selected. A decrease in one unit of hemoglobin, an increase in 0.25 units of procalcitonin, or an increase in 100 units of lactate dehydrogenase increased the severity of the disease by 35.27, 69.25, and 3.2%, respectively. Our binary logistic regression model had a predictive capability to differentiate between mild and moderate/severe disease of 84%, and between mild/moderate and severe disease of 76%. Furthermore, the selected parameters showed strong correlations with AT1-AA or ACE2-AA, particularly in men.
Hemoglobin, lactate dehydrogenase and procalcitonin can be used for initial classification of COVID-19 patients in the admission day. Subsequent determination of more complex or late arrival biomarkers may provide further data on severity, mechanisms, and therapeutic options.
我们之前表明,血管紧张素1型受体和血管紧张素转换酶2自身抗体(AT1-AA、ACE2-AA)与新冠病毒疾病(COVID-19)的严重程度相关。我们的目的是找出这些自身抗体与常规生化参数之间的相关性,以便对患者进行初步分类。
在119例COVID-19患者的初始队列中,在诊断后24小时内获取血清AT1-AA和ACE2-AA浓度。在50例具有全套常规生化参数、临床数据和疾病转归信息的患者中,使用随机森林算法选择预后指标,并使用斯皮尔曼系数分析与AT1-AA、ACE2-AA的相关性。
选择了血红蛋白、乳酸脱氢酶和降钙素原。血红蛋白每降低1个单位、降钙素原每增加0.25个单位或乳酸脱氢酶每增加100个单位,疾病严重程度分别增加35.27%、69.25%和3.2%。我们的二元逻辑回归模型区分轻度与中度/重度疾病的预测能力为84%,区分轻度/中度与重度疾病的预测能力为76%。此外,所选参数与AT1-AA或ACE2-AA显示出强相关性,尤其是在男性中。
血红蛋白、乳酸脱氢酶和降钙素原可用于COVID-19患者入院当天的初步分类。随后测定更复杂或较晚出现的生物标志物可能会提供有关疾病严重程度、机制和治疗选择的更多数据。