Gao Hongxiang, Lin Yubin, Monge Manuel
University of Southern California, Los Angeles, CA 90089, USA.
IEEE Biomed Circuits Syst Conf. 2021 Oct;2021. doi: 10.1109/biocas49922.2021.9645032. Epub 2021 Dec 23.
This papers reports a magnetic field gradient-based imaging system for in-body devices which takes inspiration from the localization principles of magnetic resonance imaging. By applying three orthogonal magnetic field gradients, the location of a device inside the body can be determined by measuring the magnetic fields in the device and transmitting this information to an external reader. The proposed system consists of one pair of Helmholtz coils and two pairs of saddle coils and is capable of generating the three orthogonal gradient fields. To emulate an implantable device, a miniature sensor module was designed using off-the-shelf components and semi-passive UHF RFID. The proposed localization system produces magnetic field gradients up to 187.4 G/m while consuming 1 A and achieves an average localization error of 80 m.
本文报道了一种基于磁场梯度的体内装置成像系统,该系统借鉴了磁共振成像的定位原理。通过施加三个正交磁场梯度,可通过测量装置内的磁场并将该信息传输到外部读取器来确定体内装置的位置。所提出的系统由一对亥姆霍兹线圈和两对鞍形线圈组成,能够产生三个正交梯度场。为了模拟植入式装置,使用现成组件和半无源超高频射频识别技术设计了一个微型传感器模块。所提出的定位系统在消耗1 A电流时可产生高达187.4 G/m的磁场梯度,平均定位误差为80 m。