Suppr超能文献

利用响应面法(RSM)从电镀污泥中回收有价金属的间接生物浸出及各种参数的优化。

Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM).

作者信息

Tian Bingyang, Cui Yanchao, Qin Zijian, Wen Lingkai, Li Zhihua, Chu Huichao, Xin Baoping

机构信息

School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China.

School of Materials, Beijing Institute of Technology, Beijing, 100081, PR China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China.

出版信息

J Environ Manage. 2022 Jun 15;312:114927. doi: 10.1016/j.jenvman.2022.114927. Epub 2022 Mar 28.

Abstract

Electroplating sludge contains amounts of valuable/toxic metals as a typical hazardous solid waste, but existing technology is hard to simultaneously gain the high recovery of valuable metals and its convert into general solid waste. In this study, indirect bioleaching process was optimized by using RSM for high recovery of four valuable metals (Ni, Cu, Zn and Cr) from electroplating sludge and its shift into general waste. The results showed that the maximum leaching rate respectively was 100% for Ni, 96.5% for Cu, 100% for Zn and 76.1% for Cr at the optimal conditions. In particular, bioleaching saw a much better performance than HSO leaching in removal of highly toxic Cr (76.1% vs. 30.2%). The extraction efficiency of Cr by HSO leaching sharply rose to 72.6% in the presence of 9.0 g/L Fe, suggesting that Fe played an important role in the bioleaching of Cr. Based on bioleaching dynamics analysis, it was speculated that Fe passes through the solid shell and enter inside the sludge to attack Cr assisting by extracellular polymeric substances (EPS), leading to high extraction and low residue of Cr. Meanwhile, due to high-efficient release and removal of valuable/toxic metals by bioleaching, the bioleached residues successfully degraded into general based on TCLP test and can be reused as construction material safely.

摘要

电镀污泥作为一种典型的危险固体废物,含有大量有价值/有毒金属,但现有技术很难同时实现有价值金属的高回收率及其转化为一般固体废物。在这项研究中,通过响应面法(RSM)优化间接生物浸出工艺,从电镀污泥中回收四种有价值金属(Ni、Cu、Zn 和 Cr)并将其转化为一般废物。结果表明,在最佳条件下,Ni 的浸出率最高可达 100%,Cu 的浸出率为 96.5%,Zn 的浸出率为 100%,Cr 的浸出率为 76.1%。特别是,生物浸出在去除剧毒 Cr 方面表现出更好的性能(76.1%对 30.2%)。在 9.0 g/L Fe 的存在下,HSO 浸出对 Cr 的提取效率急剧上升至 72.6%,表明 Fe 在 Cr 的生物浸出中起着重要作用。基于生物浸出动力学分析,推测 Fe 通过固壳并在细胞外聚合物物质(EPS)的协助下进入污泥内部攻击 Cr,导致 Cr 的高提取和低残留。同时,由于生物浸出高效释放和去除有价值/有毒金属,生物浸出残渣成功地根据 TCLP 测试降解为一般废物,并可安全地重新用作建筑材料。

相似文献

2
Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching.
J Hazard Mater. 2010 Jun 15;178(1-3):823-33. doi: 10.1016/j.jhazmat.2010.02.013. Epub 2010 Feb 10.
3
Bioleaching of Copper-Containing Electroplating Sludge.
J Environ Manage. 2021 May 1;285:112133. doi: 10.1016/j.jenvman.2021.112133. Epub 2021 Feb 16.
4
Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag.
Sci Total Environ. 2022 Sep 10;838(Pt 3):156453. doi: 10.1016/j.scitotenv.2022.156453. Epub 2022 Jun 2.
5
Cleaner utilization of electroplating sludge by bioleaching with a moderately thermophilic consortium: A pilot study.
Chemosphere. 2019 Oct;232:345-355. doi: 10.1016/j.chemosphere.2019.05.185. Epub 2019 May 24.
6
Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
J Hazard Mater. 2010 Feb 15;174(1-3):763-9. doi: 10.1016/j.jhazmat.2009.09.117. Epub 2009 Sep 30.
7
Comparative study of electroplating sludge reutilization in China: environmental and economic performances.
Environ Sci Pollut Res Int. 2023 Oct;30(48):106598-106610. doi: 10.1007/s11356-023-29849-z. Epub 2023 Sep 21.
8
Stepwise recycling of Fe, Cu, Zn and Ni from real electroplating sludge via coupled acidic leaching and hydrothermal and extraction routes.
Environ Res. 2023 Jan 1;216(Pt 1):114462. doi: 10.1016/j.envres.2022.114462. Epub 2022 Sep 30.
9
Co-treatment of electroplating sludge, copper slag, and spent cathode carbon for recovering and solidifying heavy metals.
J Hazard Mater. 2021 Sep 5;417:126020. doi: 10.1016/j.jhazmat.2021.126020. Epub 2021 May 5.
10
Heavy metal removal from contaminated sludge for land application: a review.
Waste Manag. 2006;26(9):988-1004. doi: 10.1016/j.wasman.2005.09.017. Epub 2005 Nov 17.

引用本文的文献

1
Rapid Regeneration of Spent FCC Catalysts through Selective Bioleaching by the Spent Medium Process.
ACS Omega. 2025 Apr 9;10(15):15563-15571. doi: 10.1021/acsomega.5c00629. eCollection 2025 Apr 22.
2
Research on Resource Recovery and Disposal of Copper-Containing Sludge.
Materials (Basel). 2024 May 29;17(11):2636. doi: 10.3390/ma17112636.
3
Approaches for the Treatment and Resource Utilization of Electroplating Sludge.
Materials (Basel). 2024 Apr 8;17(7):1707. doi: 10.3390/ma17071707.
4
Enhancing biodiesel yield and purification with a recently developed centrifuge machine: A response surface methodology approach.
Heliyon. 2024 Apr 2;10(7):e29018. doi: 10.1016/j.heliyon.2024.e29018. eCollection 2024 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验