Suppr超能文献

SentiMedQAer:一种基于迁移学习的生物医学问答情感感知模型。

SentiMedQAer: A Transfer Learning-Based Sentiment-Aware Model for Biomedical Question Answering.

作者信息

Zhu Xian, Chen Yuanyuan, Gu Yueming, Xiao Zhifeng

机构信息

School of Information Management, Nanjing University, Nanjing, China.

School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, China.

出版信息

Front Neurorobot. 2022 Mar 10;16:773329. doi: 10.3389/fnbot.2022.773329. eCollection 2022.

Abstract

Recent advances have witnessed a trending application of transfer learning in a broad spectrum of natural language processing (NLP) tasks, including question answering (QA). Transfer learning allows a model to inherit domain knowledge obtained from an existing model that has been sufficiently pre-trained. In the biomedical field, most QA datasets are limited by insufficient training examples and the presence of factoid questions. This study proposes a transfer learning-based sentiment-aware model, named SentiMedQAer, for biomedical QA. The proposed method consists of a learning pipeline that utilizes BioBERT to encode text tokens with contextual and domain-specific embeddings, fine-tunes Text-to-Text Transfer Transformer (T5), and RoBERTa models to integrate sentiment information into the model, and trains an XGBoost classifier to output a confidence score to determine the final answer to the question. We validate SentiMedQAer on PubMedQA, a biomedical QA dataset with reasoning-required yes/no questions. Results show that our method outperforms the SOTA by 15.83% and a single human annotator by 5.91%.

摘要

最近的进展表明,迁移学习在包括问答(QA)在内的广泛自然语言处理(NLP)任务中得到了越来越多的应用。迁移学习允许模型继承从经过充分预训练的现有模型中获得的领域知识。在生物医学领域,大多数QA数据集受到训练示例不足和事实性问题存在的限制。本研究提出了一种基于迁移学习的情感感知模型,名为SentiMedQAer,用于生物医学QA。所提出的方法包括一个学习管道,该管道利用BioBERT对具有上下文和特定领域嵌入的文本令牌进行编码,对文本到文本迁移变换器(T5)和RoBERTa模型进行微调,以将情感信息集成到模型中,并训练一个XGBoost分类器输出置信度分数,以确定问题的最终答案。我们在PubMedQA上验证了SentiMedQAer,这是一个具有需要推理的是非问题的生物医学QA数据集。结果表明,我们的方法比当前最优方法高出15.83%,比单个人类注释者高出5.91%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd85/8961296/ea1407989804/fnbot-16-773329-g0001.jpg

相似文献

1
SentiMedQAer: A Transfer Learning-Based Sentiment-Aware Model for Biomedical Question Answering.
Front Neurorobot. 2022 Mar 10;16:773329. doi: 10.3389/fnbot.2022.773329. eCollection 2022.
2
Named Entity Aware Transfer Learning for Biomedical Factoid Question Answering.
IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2365-2376. doi: 10.1109/TCBB.2021.3079339. Epub 2022 Aug 8.
3
SemBioNLQA: A semantic biomedical question answering system for retrieving exact and ideal answers to natural language questions.
Artif Intell Med. 2020 Jan;102:101767. doi: 10.1016/j.artmed.2019.101767. Epub 2019 Nov 28.
4
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
5
External features enriched model for biomedical question answering.
BMC Bioinformatics. 2021 May 26;22(1):272. doi: 10.1186/s12859-021-04176-7.
6
Word embeddings and external resources for answer processing in biomedical factoid question answering.
J Biomed Inform. 2019 Apr;92:103118. doi: 10.1016/j.jbi.2019.103118. Epub 2019 Feb 10.
7
Survey of transformers and towards ensemble learning using transformers for natural language processing.
J Big Data. 2024;11(1):25. doi: 10.1186/s40537-023-00842-0. Epub 2024 Feb 4.
8
Adversarial Knowledge Distillation Based Biomedical Factoid Question Answering.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):106-118. doi: 10.1109/TCBB.2022.3161032. Epub 2023 Feb 3.
9
A self-supervised language model selection strategy for biomedical question answering.
J Biomed Inform. 2023 Oct;146:104486. doi: 10.1016/j.jbi.2023.104486. Epub 2023 Sep 16.
10
Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning.
Sensors (Basel). 2022 May 30;22(11):4157. doi: 10.3390/s22114157.

引用本文的文献

2
Question answering systems for health professionals at the point of care-a systematic review.
J Am Med Inform Assoc. 2024 Apr 3;31(4):1009-1024. doi: 10.1093/jamia/ocae015.

本文引用的文献

2
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
4
An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition.
BMC Bioinformatics. 2015 Apr 30;16:138. doi: 10.1186/s12859-015-0564-6.
5
Biomedical question answering: a survey.
Comput Methods Programs Biomed. 2010 Jul;99(1):1-24. doi: 10.1016/j.cmpb.2009.10.003. Epub 2009 Nov 13.
6
Factors associated with success in searching MEDLINE and applying evidence to answer clinical questions.
J Am Med Inform Assoc. 2002 May-Jun;9(3):283-93. doi: 10.1197/jamia.m0996.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验