Suppr超能文献

用于描述小分子存在下的双链 DNA 和 G-四链体的半经验和线性标度 DFT 方法。

Semi-empirical and linear-scaling DFT methods to characterize duplex DNA and G-quadruplexes in the presence of interacting small molecules.

机构信息

CICnanoGUNE BRTA, Tolosa Hiribidea 76, E-20018, Donostia - San Sebastián, Spain.

Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain.

出版信息

Phys Chem Chem Phys. 2022 May 18;24(19):11510-11519. doi: 10.1039/d2cp00214k.

Abstract

The computational study of DNA and its interaction with ligands is a highly relevant area of research, with significant consequences for developing new therapeutic strategies. However, the computational description of such large and complex systems requires considering interactions of different types simultaneously in a balanced way, such as non-covalent weak interactions (namely hydrogen bonds and stacking), metal-ligand interactions, polarisation and charge transfer effects. All these considerations imply a real challenge for computational chemistry. The possibility of studying large biological systems using quantum methods for the entire system requires significant computational resources, with improvements in parallelisation and optimisation of theoretical strategies. Computational methods, such as Linear-Scaling Density Functional Theory (LS-DFT) and DLPNO-CCSD(T), may allow performing quantum mechanics calculations, including the electronic structure for large biological systems, in a reasonable computing time. In this work, we study the interaction of small molecules and cations with DNA (both duplex DNA and G-quadruplexes), comparing different computational methods: a LS-DFT method at the LMKLL/DZDP level of theory, semi-empirical methods (PM6-DH2 and PM7), mixed QM/MM, and DLPNO-CCSD(T). Our goal is to demonstrate the adequacy of LS-DFT to treat the different types of interactions present in DNA-dependent systems. We show that LMKLL/DZDP using SIESTA can yield very accurate geometries and energetics in all the different systems considered in this work: duplex DNA (dDNA), phenanthroline intercalating dDNA, G-quadruplexes, and metal-G-tetrads considering alkaline metals of different sizes. As far as we know, this is the first time that full G-quadruplex geometry optimisations have been carried out using a DFT method thanks to its linear-scaling capabilities. Moreover, we show that LS-DFT provides high-quality structures, and some semi-empirical Hamiltonians can also yield suitable geometries. However, DLPNO-CCSD(T) and LS-DFT are the only methods that accurately describe interaction energies for all the systems considered in our study.

摘要

DNA 及其与配体相互作用的计算研究是一个极具研究意义的领域,对于开发新的治疗策略具有重要意义。然而,对如此庞大而复杂的系统进行计算描述需要同时以平衡的方式考虑不同类型的相互作用,例如非共价弱相互作用(即氢键和堆积)、金属-配体相互作用、极化和电荷转移效应。所有这些考虑都对计算化学提出了真正的挑战。使用量子方法研究整个系统的大型生物系统的可能性需要大量的计算资源,并需要在并行化和理论策略优化方面取得进展。计算方法,如线性标度密度泛函理论 (LS-DFT) 和 DLPNO-CCSD(T),可能允许在合理的计算时间内对包括大型生物系统电子结构在内的大系统进行量子力学计算。在这项工作中,我们研究了小分子和阳离子与 DNA(双链 DNA 和 G-四链体)的相互作用,比较了不同的计算方法:在 LMKLL/DZDP 理论水平上的 LS-DFT 方法、半经验方法 (PM6-DH2 和 PM7)、混合 QM/MM 和 DLPNO-CCSD(T)。我们的目标是证明 LS-DFT 能够充分处理 DNA 相关系统中存在的不同类型的相互作用。我们表明,使用 SIESTA 的 LMKLL/DZDP 可以在本工作中考虑的所有不同系统中产生非常准确的几何形状和能量:双链 DNA(dDNA)、菲咯啉嵌入 dDNA、G-四链体和考虑不同大小的碱性金属的金属-G-四联体。据我们所知,这是首次使用 DFT 方法对完整的 G-四链体几何形状进行优化,这要归功于其线性标度能力。此外,我们表明 LS-DFT 提供高质量的结构,一些半经验哈密顿量也可以产生合适的几何形状。然而,只有 LS-DFT 和 DLPNO-CCSD(T) 方法可以准确描述我们研究中所有系统的相互作用能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验