Yin Xu-Fei, Du Yuxuan, Fei Yue-Yang, Zhang Rui, Liu Li-Zheng, Mao Yingqiu, Liu Tongliang, Hsieh Min-Hsiu, Li Li, Liu Nai-Le, Tao Dacheng, Chen Yu-Ao, Pan Jian-Wei
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China.
Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.
Phys Rev Lett. 2022 Mar 18;128(11):110501. doi: 10.1103/PhysRevLett.128.110501.
The recognition of entanglement states is a notoriously difficult problem when no prior information is available. Here, we propose an efficient quantum adversarial bipartite entanglement detection scheme to address this issue. Our proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits, where a two-outcome measurement can be used to query a classical binary result about whether the input state is bipartite entangled or not. In principle, for an N-qubit quantum state, the runtime complexity of our proposal is O(poly(N)T) with T being the number of iterations. We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states. Our work paves the way for using near-term quantum machines to tackle entanglement detection on multipartite entangled quantum systems.
在没有先验信息可用的情况下,识别纠缠态是一个极其困难的问题。在此,我们提出一种高效的量子对抗性二分纠缠检测方案来解决这个问题。我们的方案将二分纠缠检测重新表述为一个由参数化量子电路完成的两人零和博弈,其中一个双结果测量可用于查询关于输入态是否为二分纠缠的经典二元结果。原则上,对于一个N量子比特的量子态,我们方案的运行时复杂度为O(poly(N)T),其中T是迭代次数。我们在一个线性光学网络上通过实验实现了我们的协议,并展示了其对5量子比特量子纯态和2量子比特量子混合态完成二分纠缠检测的有效性。我们的工作为利用近期量子机器解决多体纠缠量子系统上的纠缠检测铺平了道路。