Ibrahim Muhammad, Berrouk Abdallah S, Saeed Tareq, Algehyne Ebrahem A, Ali Vakkar
Mechanical Engineering Department, Khalifa University of Science and Technology, SAN Campus, PO Box 127788, Abu Dhabi, United Arab Emirates.
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
Sci Rep. 2022 Apr 1;12(1):5514. doi: 10.1038/s41598-022-09320-8.
This research conducts a study of natural convection heat transfer (NCHT) in a nanofluid under a magnetic field (MF). The nanofluid is in a cavity inclined at an angle of 45°. The MF can take different angles between 0° and 90°. Radiative heat transfer is present in the cavity in volumetric form. There are two hot semicircles, similar to two half-pipes, on the bottom wall. The top wall is kept cold. The side walls and parts of the bottom wall, except the pipes, have been insulated. The lattice Boltzmann method has been used for the simulation. The studied parameters are the Rayleigh number (in the range 10-10), magnetic field angle, radiation parameter (in the range 0-2), and nanoparticle volume fraction (in the range 0-5%). The generated entropy has been studied as the NCHT. The results indicate that adding nanoparticles improves heat transfer rate (HTR). Moreover, the addition of volumetric radiation to the cavity enhances the Nusselt number by 54% and the generated entropy by 12.5%. With an augmentation in the MF angle from 0° to 90°, HTR decreases and this decrease is observed mostly at higher Rayleigh numbers. An augmentation in the Ra increases NCHT and entropy generation. Indeed, a rise in the Ra from 10 to 10 increases HTR by almost sixfold.
本研究对磁场作用下纳米流体中的自然对流换热进行了研究。纳米流体位于一个倾斜45°的腔内。磁场可在0°至90°之间取不同角度。腔内存在体积形式的辐射换热。底壁上有两个热半圆,类似于两个半管。顶壁保持低温。侧壁和底壁除管道部分外均已隔热。采用格子玻尔兹曼方法进行模拟。研究的参数有瑞利数(范围为10⁴ - 10⁷)、磁场角度、辐射参数(范围为0 - 2)和纳米颗粒体积分数(范围为0 - 5%)。将产生的熵作为自然对流换热进行了研究。结果表明,添加纳米颗粒可提高传热速率。此外,向腔内添加体积辐射可使努塞尔数提高54%,产生的熵提高12.5%。随着磁场角度从0°增加到90°,传热速率降低,且这种降低在较高瑞利数时最为明显。瑞利数的增加会增加自然对流换热和熵产生。实际上,瑞利数从10⁴增加到10⁷会使传热速率几乎提高六倍。