Zheng Kun, Liao Leiping, Zhang Yu, Tan Hua, Liu Jingquan, Li Chenwei, Jia Dedong
College of Material Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China.
School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore, Singapore.
J Colloid Interface Sci. 2022 Aug;619:75-83. doi: 10.1016/j.jcis.2022.03.056. Epub 2022 Mar 25.
Constructing hierarchical structure is an effective strategy to boost the electrochemical performance of layered double hydroxide (LDH) materials, but the rational design of such delicate architectures is still challenging. Herein, a unique hierarchical core/shell homostructure with NiCo-LDH nanorods (NCNRs) as core and NiCo-LDH nanosheets (NCNSs) as shell is constructed via in-situ ZIF shell growth and subsequent ion exchange-coprecipitation process. Such novel hierarchical structure provides a large accessible surface area and more exposed electrochemical active sites. The in-situ growth and conversion process contribute to the formation of robust adhesion between the core and the shell, which could facilitate the effective charge and ion diffusion, as well as improve the mechanical stability. Benefiting from the unique structure, the NCNRs@NCNSs electrode exhibits a high capacitance of 2640.2 F g, along with the good rate performance and cyclic stability. Furthermore, the as-assembled asymmetric supercapacitor of NCNRs@NCNSs//AC device displays a high energy density of 22.81 Wh kg at the power density of 374.95 W kg. This work demonstrates a new strategy for designing hierarchical LDH with core/shell structure as electrode materials for superior electrochemical energy storage.
构建分层结构是提高层状双氢氧化物(LDH)材料电化学性能的有效策略,但合理设计这种精细结构仍然具有挑战性。在此,通过原位ZIF壳层生长和随后的离子交换共沉淀过程,构建了一种独特的以NiCo-LDH纳米棒(NCNRs)为核、NiCo-LDH纳米片(NCNSs)为壳的分层核/壳同质结构。这种新颖的分层结构提供了大的可及表面积和更多暴露的电化学活性位点。原位生长和转化过程有助于在核与壳之间形成牢固的附着力,这有利于有效的电荷和离子扩散,并提高机械稳定性。得益于独特的结构,NCNRs@NCNSs电极表现出2640.2 F g的高电容,以及良好的倍率性能和循环稳定性。此外,组装的NCNRs@NCNSs//AC不对称超级电容器在功率密度为374.95 W kg时显示出22.81 Wh kg的高能量密度。这项工作展示了一种设计具有核/壳结构的分层LDH作为用于卓越电化学储能的电极材料的新策略。