Suppr超能文献

一种用于检测的快速高效RPA-CRISPR/Cas12a检测方法的开发。

Development of a Rapid and Efficient RPA-CRISPR/Cas12a Assay for Detection.

作者信息

Li Feina, Xiao Jing, Yang Haiming, Yao Yao, Li Jieqiong, Zheng Huiwen, Guo Qian, Wang Xiaotong, Chen Yuying, Guo Yajie, Wang Yonghong, Shen Chen

机构信息

Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, China.

Department of Respiratory Diseases II, Beijing Children's Hospital, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Capital Medical University, Beijing, China.

出版信息

Front Microbiol. 2022 Mar 15;13:858806. doi: 10.3389/fmicb.2022.858806. eCollection 2022.

Abstract

(MP) is a one of most common pathogen in causing respiratory infection in children and adolescents. Rapid and efficient diagnostic methods are crucial for control and treatment of MP infections. Herein, we present an operationally simple, rapid and efficient molecular method for MP identification, which eliminates expensive instruments and specialized personnel. The method combines recombinase polymerase amplification (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated proteins (Cas) 12a-based detection, with an optimal procedure less than 1 h from sample to result including DNA extraction (25 min), RPA reaction (39°C for 15-20 min), CRISPR/Cas12a detection (37°C for 10 min) and visual detection by naked eyes (2 min). This diagnostic method shows high sensitivity (two copies per reaction) and no cross-reactivity against other common pathogenic bacteria. Preliminary evaluation using 201 clinical samples shows sensitivity of 99.1% (107/108), specificity of 100% (93/93) and consistency of 99.5% (200/201), compared with real-time PCR method. The above data demonstrate that our developed method is reliable for rapid diagnosis of MP. In conclusion, the RPA-CRISPR/Cas12a has a great potential to be as a useful tool for reliable and quick diagnosis of MP infection, especially in primary hospitals with limited conditions.

摘要

肺炎支原体(MP)是引起儿童和青少年呼吸道感染最常见的病原体之一。快速有效的诊断方法对于MP感染的控制和治疗至关重要。在此,我们提出一种操作简单、快速高效的MP鉴定分子方法,该方法无需昂贵仪器和专业人员。该方法将重组酶聚合酶扩增(RPA)与基于成簇规律间隔短回文重复序列(CRISPR)/CRISPR相关蛋白(Cas)12a的检测相结合,从样本到结果的最佳流程少于1小时,包括DNA提取(25分钟)、RPA反应(39°C 15 - 20分钟)、CRISPR/Cas12a检测(37°C 10分钟)和肉眼视觉检测(2分钟)。这种诊断方法显示出高灵敏度(每个反应两个拷贝),且对其他常见病原菌无交叉反应。与实时PCR方法相比,使用201份临床样本进行的初步评估显示灵敏度为99.1%(107/108),特异性为100%(93/93),一致性为99.5%(200/201)。上述数据表明,我们开发的方法对于MP的快速诊断是可靠的。总之,RPA - CRISPR/Cas12a有很大潜力成为可靠快速诊断MP感染的有用工具,尤其是在条件有限的基层医院。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e65/8965353/7ce9f153552a/fmicb-13-858806-g001.jpg

相似文献

1
Development of a Rapid and Efficient RPA-CRISPR/Cas12a Assay for Detection.
Front Microbiol. 2022 Mar 15;13:858806. doi: 10.3389/fmicb.2022.858806. eCollection 2022.
3
Rapid detection of by recombinase polymerase amplification combined with CRISPR-Cas12a biosensing system.
Front Cell Infect Microbiol. 2023 Aug 10;13:1239269. doi: 10.3389/fcimb.2023.1239269. eCollection 2023.
4
RPA-CRISPR/Cas12a-LFA combined with a digital visualization instrument to detect in stray dogs and cats in Zhejiang province, China.
Microbiol Spectr. 2024 Jul 2;12(7):e0399823. doi: 10.1128/spectrum.03998-23. Epub 2024 May 29.
6
Establishment of a rapid detection method for Mycoplasma pneumoniae based on RPA-CRISPR-Cas12a technology.
Clin Chim Acta. 2025 Jan 1;564:119906. doi: 10.1016/j.cca.2024.119906. Epub 2024 Aug 9.
8
Recombinase Polymerase Amplification Coupled with CRISPR-Cas12a Technology for Rapid and Highly Sensitive Detection of and .
Plant Dis. 2023 May;107(5):1365-1376. doi: 10.1094/PDIS-02-22-0386-RE. Epub 2023 May 3.
9
Rapid, ultrasensitive and highly specific diagnosis of by a CRISPR-based detection platform.
Front Cell Infect Microbiol. 2023 Jul 27;13:1147142. doi: 10.3389/fcimb.2023.1147142. eCollection 2023.
10
A rapid and ultra-sensitive dual readout platform for detection based on RPA-CRISPR/Cas12a.
Front Cell Infect Microbiol. 2024 Jun 27;14:1362513. doi: 10.3389/fcimb.2024.1362513. eCollection 2024.

引用本文的文献

1
A naked-eye biosensing system based on one-pot RPA-CRISPR/Cas12a driver G4-hemin self-assembly for .
Front Chem. 2025 Aug 7;13:1631086. doi: 10.3389/fchem.2025.1631086. eCollection 2025.
2
Establishment of a Rapid Detection Technique Based on RPA-LFD and RPA-CRISPR/Cas12a on .
Microorganisms. 2025 Apr 10;13(4):863. doi: 10.3390/microorganisms13040863.
3
ERA-CRISPR/Cas12a-based, fast and specific diagnostic detection for .
Front Cell Infect Microbiol. 2024 Nov 1;14:1477422. doi: 10.3389/fcimb.2024.1477422. eCollection 2024.
4
An accurate and convenient method for via one-step LAMP-CRISPR/Cas12b detection platform.
Front Cell Infect Microbiol. 2024 Aug 8;14:1409078. doi: 10.3389/fcimb.2024.1409078. eCollection 2024.
5
Development and evaluation of rapid and accurate one-tube RPA-CRISPR-Cas12b-based detection of mcr-1 and tet(X4).
Appl Microbiol Biotechnol. 2024 May 27;108(1):345. doi: 10.1007/s00253-024-13191-6.
6
A Method for Detecting Five Carbapenemases in Bacteria Based on CRISPR-Cas12a Multiple RPA Rapid Detection Technology.
Infect Drug Resist. 2024 Apr 24;17:1599-1614. doi: 10.2147/IDR.S429707. eCollection 2024.
7
Rapid visual detection of Giardia duodenalis in faecal samples using an RPA-CRISPR/Cas12a system.
Parasitol Res. 2024 Apr 4;123(4):176. doi: 10.1007/s00436-024-08197-y.
8
A One-Pot Convenient RPA-CRISPR-Based Assay for Serovar Indiana Detection.
Microorganisms. 2024 Mar 5;12(3):519. doi: 10.3390/microorganisms12030519.
9
Advances in the application of CRISPR-Cas technology in rapid detection of pathogen nucleic acid.
Front Mol Biosci. 2023 Sep 21;10:1260883. doi: 10.3389/fmolb.2023.1260883. eCollection 2023.
10
Rapid, ultrasensitive and highly specific diagnosis of by a CRISPR-based detection platform.
Front Cell Infect Microbiol. 2023 Jul 27;13:1147142. doi: 10.3389/fcimb.2023.1147142. eCollection 2023.

本文引用的文献

1
Recombinase Polymerase Amplification/Cas12a-Based Identification of pv. on Peach.
Front Plant Sci. 2021 Nov 23;12:740177. doi: 10.3389/fpls.2021.740177. eCollection 2021.
2
Genotype and mutation patterns of macrolide resistance genes of Mycoplasma pneumoniae from children with pneumonia in Qingdao, China, in 2019.
J Glob Antimicrob Resist. 2021 Dec;27:273-278. doi: 10.1016/j.jgar.2021.10.003. Epub 2021 Oct 20.
4
Detection of Infectious Viruses Using CRISPR-Cas12-Based Assay.
Biosensors (Basel). 2021 Aug 28;11(9):301. doi: 10.3390/bios11090301.
5
Visual detection of human metapneumovirus using CRISPR-Cas12a diagnostics.
Virus Res. 2021 Nov;305:198568. doi: 10.1016/j.virusres.2021.198568. Epub 2021 Sep 26.
6
CRISPR/Cas12a-mediated liposome-amplified strategy for the photoelectrochemical detection of nucleic acid.
Chem Commun (Camb). 2021 Sep 6;57(71):8977-8980. doi: 10.1039/d1cc03743a.
8
Increased Macrolide Resistance Rate of M3562 Correlated With Macrolide Usage and Genotype Shifting.
Front Cell Infect Microbiol. 2021 May 12;11:675466. doi: 10.3389/fcimb.2021.675466. eCollection 2021.
10
Mycoplasma pneumoniae Genotypes and Clinical Outcome in Children.
J Clin Microbiol. 2021 Jun 18;59(7):e0074821. doi: 10.1128/JCM.00748-21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验