Suppr超能文献

基于机器学习模型的活体肝移植供体肝脂肪变性的鉴定。

Identification of hepatic steatosis in living liver donors by machine learning models.

机构信息

Department of GastroenterologyAsan Liver CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea.

Department of BiostatisticsKorea University College of MedicineSeoulRepublic of Korea.

出版信息

Hepatol Commun. 2022 Jul;6(7):1689-1698. doi: 10.1002/hep4.1921. Epub 2022 Apr 4.

Abstract

Selecting an optimal donor for living donor liver transplantation is crucial for the safety of both the donor and recipient, and hepatic steatosis is an important consideration. We aimed to build a prediction model with noninvasive variables to evaluate macrovesicular steatosis in potential donors by using various prediction models. The study population comprised potential living donors who had undergone donation workup, including percutaneous liver biopsy, in the Republic of Korea between 2016 and 2019. Meaningful macrovesicular hepatic steatosis was defined as >5%. Whole data were divided into training (70.5%) and test (29.5%) data sets based on the date of liver biopsy. Random forest, support vector machine, regularized discriminant analysis, mixture discriminant analysis, flexible discriminant analysis, and deep neural network machine learning methods as well as traditional logistic regression were employed. The mean patient age was 31.4 years, and 66.3% of the patients were men. Of the 1652 patients, 518 (31.4%) had >5% macrovesicular steatosis on the liver biopsy specimen. The logistic model had the best prediction power and prediction performances with an accuracy of 80.0% and 80.9% in the training and test data sets, respectively. A cut-off value of 31.1% for the predicted risk of hepatic steatosis was selected with a sensitivity of 77.7% and specificity of 81.0%. We have provided our model on the website (https://hanseungbong.shinyapps.io/shiny_app_up/) under the name DONATION Model. Our algorithm to predict macrovesicular steatosis using routine parameters is beneficial for identifying optimal potential living donors by avoiding superfluous liver biopsy results.

摘要

选择最佳的活体肝移植供体对于供体和受者的安全至关重要,肝脂肪变性是一个重要的考虑因素。我们旨在建立一个使用各种预测模型的非侵入性变量预测模型,以评估潜在供体的巨泡性脂肪变性。研究人群包括 2016 年至 2019 年在韩国进行过捐赠检查(包括经皮肝活检)的潜在活体供体。有意义的巨泡性肝脂肪变性定义为>5%。根据肝活检日期,将全数据分为训练(70.5%)和测试(29.5%)数据集。随机森林、支持向量机、正则判别分析、混合判别分析、灵活判别分析和深度神经网络机器学习方法以及传统逻辑回归均被用于该研究。患者的平均年龄为 31.4 岁,66.3%的患者为男性。在 1652 名患者中,518 名(31.4%)肝活检标本存在>5%的巨泡性脂肪变性。逻辑模型在训练和测试数据集的准确率分别为 80.0%和 80.9%,具有最佳的预测能力和预测性能。选择预测脂肪变性风险的临界值为 31.1%,其敏感性为 77.7%,特异性为 81.0%。我们已经在网站(https://hanseungbong.shinyapps.io/shiny_app_up/)上以 DONATION Model 的名义提供了我们的模型。我们的算法使用常规参数预测巨泡性脂肪变性,有助于通过避免多余的肝活检结果来识别最佳的潜在活体供体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7ac/9234640/afa42f34848c/HEP4-6-1689-g004.jpg

相似文献

1
Identification of hepatic steatosis in living liver donors by machine learning models.
Hepatol Commun. 2022 Jul;6(7):1689-1698. doi: 10.1002/hep4.1921. Epub 2022 Apr 4.
3
Noninvasive evaluation of graft steatosis in living donor liver transplantation.
Transplantation. 2004 Nov 27;78(10):1501-5. doi: 10.1097/01.tp.0000140499.23683.0d.
6
Is Unenhanced Computed Tomography Reliable in the Assessment of Macrovesicular Steatosis in Living Liver Donors?
Exp Clin Transplant. 2019 Dec;17(6):749-752. doi: 10.6002/ect.2019.0326. Epub 2019 Oct 31.
8
Body Mass Index and Unenhanced CT as a Predictor of Hepatic Steatosis in Potential Liver Donors.
Transplant Proc. 2019 Sep;51(7):2373-2378. doi: 10.1016/j.transproceed.2019.02.047. Epub 2019 Aug 8.
9
Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment.
Radiology. 2006 Apr;239(1):105-12. doi: 10.1148/radiol.2391050361. Epub 2006 Feb 16.
10
Noninvasive estimation of hepatic steatosis in living liver donors: usefulness of visceral fat area measurement.
Transplantation. 2009 Aug 27;88(4):575-81. doi: 10.1097/TP.0b013e3181b11c19.

引用本文的文献

1
Applications of neural networks in liver transplantation.
ILIVER. 2022 Aug 9;1(2):101-110. doi: 10.1016/j.iliver.2022.07.002. eCollection 2022 Jun.
2
Crossroads in Liver Transplantation: Is Artificial Intelligence the Key to Donor-Recipient Matching?
Medicina (Kaunas). 2022 Nov 28;58(12):1743. doi: 10.3390/medicina58121743.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验