School of Computer & Information Engineering, Anyang Normal University, Anyang Henan, China.
Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China.
Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac105.
The single-cell multiomics technologies provide an unprecedented opportunity to study the cellular heterogeneity from different layers of transcriptional regulation. However, the datasets generated from these technologies tend to have high levels of noise, making data analysis challenging. Here, we propose jointly semi-orthogonal nonnegative matrix factorization (JSNMF), which is a versatile toolkit for the integrative analysis of transcriptomic and epigenomic data profiled from the same cell. JSNMF enables data visualization and clustering of the cells and also facilitates downstream analysis, including the characterization of markers and functional pathway enrichment analysis. The core of JSNMF is an unsupervised method based on JSNMF, where it assumes different latent variables for the two molecular modalities, and integrates the information of transcriptomic and epigenomic data with consensus graph fusion, which better tackles the distinct characteristics and levels of noise across different molecular modalities in single-cell multiomics data. We applied JSNMF to single-cell multiomics datasets from different tissues and different technologies. The results demonstrate the superior performance of JSNMF in clustering and data visualization of the cells. JSNMF also allows joint analysis of multiple single-cell multiomics experiments and single-cell multiomics data with more than two modalities profiled on the same cell. JSNMF also provides rich biological insight on the markers, cell-type-specific region-gene associations and the functions of the identified cell subpopulation.
单细胞多组学技术提供了一个前所未有的机会,从转录调控的不同层面研究细胞异质性。然而,这些技术产生的数据集往往具有较高的噪声水平,使得数据分析具有挑战性。在这里,我们提出了联合半正交非负矩阵分解(JSNMF),这是一个用于分析来自同一细胞的转录组和表观基因组数据的多功能工具包。JSNMF 能够可视化和聚类细胞,并促进下游分析,包括标记物的特征描述和功能途径富集分析。JSNMF 的核心是一种基于 JSNMF 的无监督方法,它假设两种分子模式的不同潜在变量,并通过共识图融合整合转录组和表观基因组数据的信息,从而更好地解决单细胞多组学数据中不同分子模式的独特特征和噪声水平。我们将 JSNMF 应用于来自不同组织和不同技术的单细胞多组学数据集。结果表明,JSNMF 在细胞聚类和数据可视化方面具有优越的性能。JSNMF 还允许对多个单细胞多组学实验进行联合分析,以及对同一细胞上的多个模态进行单细胞多组学数据的联合分析。JSNMF 还提供了关于标记物、细胞类型特异性区域-基因关联以及所鉴定的细胞亚群功能的丰富生物学见解。