Suppr超能文献

碳化荷叶/ZnO/Au 可见光照射下协同增强的力学和光催化杀菌活性。

Carbonized lotus leaf/ZnO/Au for enhanced synergistic mechanical and photocatalytic bactericidal activity under visible light irradiation.

机构信息

Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China.

出版信息

Colloids Surf B Biointerfaces. 2022 Jul;215:112468. doi: 10.1016/j.colsurfb.2022.112468. Epub 2022 Mar 24.

Abstract

Nowadays, bacterial resistance has continued to be a troublesome issue caused by the abuse of antibiotics, and it is the paramount difficulty in resolving the bacterial proliferation and infection. In this study, fresh lotus leaf was treated with Zn followed by sintered and modification with gold nanoparticles through the photoreduction process sequentially, and thus a composite of micro/nanostructured carbonized lotus leaf/ZnO/Au (C-LL/ZnO/Au) was obtained to explore its bactericidal properties. C-LL/ZnO/Au retained the papillary structure of fresh lotus leaf and showed great mechanical bactericidal performance and photocatalytic sterilization. The antibacterial rate of mechanical sterilization for C-LL/ZnO/Au amount to 79.5% in 30 min, 4.7 times of fresh lotus leaf's figure under the same conditions. Furthermore, in C-LL/ZnO/Au, the introduction of gold nanoparticles heightened light absorbance through localized surface plasmon resonance (LSPR) effect and separation efficiency of photogenerated electron-hole pairs, which showed improved photocatalytic sterilization than that of carbonized lotus leaf/ZnO (C-LL/ZnO). Carbonized lotus leaf/ZnO/Au exhibited prominent photocatalytic and mechanical synergistic antibacterial performance against E. coli: all the bacteria were inactivated within 30 min under visible light. The approach presented here could be applied to a variety of biomass materials, which holds a promising application potential in biomedical, public health and other fields.

摘要

现如今,抗生素滥用导致细菌耐药性不断成为一个棘手的问题,这也是解决细菌增殖和感染的首要难题。本研究通过光还原法,先后对新鲜荷叶进行锌处理、烧结和金纳米颗粒修饰,从而得到具有微/纳米结构的碳化荷叶/氧化锌/金(C-LL/ZnO/Au)复合材料,以探索其杀菌性能。C-LL/ZnO/Au 保留了新鲜荷叶的乳头状结构,表现出优异的机械杀菌性能和光催化杀菌性能。在 30 分钟内,C-LL/ZnO/Au 的机械杀菌率达到 79.5%,在相同条件下是新鲜荷叶的 4.7 倍。此外,在 C-LL/ZnO/Au 中,金纳米颗粒的引入通过局域表面等离子体共振(LSPR)效应和光生电子-空穴对的分离效率提高了光吸收,表现出比碳化荷叶/氧化锌(C-LL/ZnO)更好的光催化杀菌性能。碳化荷叶/氧化锌/金对大肠杆菌表现出显著的光催化和机械协同抗菌性能:在可见光下,所有细菌在 30 分钟内均被灭活。本研究方法可应用于多种生物质材料,在生物医学、公共卫生等领域具有广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验