Suppr超能文献

具有增强光热转换和催化性能的表面功能化金钯纳米棒

Surface-Functionalized Au-Pd Nanorods with Enhanced Photothermal Conversion and Catalytic Performance.

作者信息

Zhao Yuhang, Sarhan Radwan M, Eljarrat Alberto, Kochovski Zdravko, Koch Christoph, Schmidt Bernd, Koopman Wouter, Lu Yan

机构信息

Department for Electrochemical Energy Storage, Helmholtz Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.

Department of Physics & IRIS Adlershof, Humboldt-Universitätzu zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.

出版信息

ACS Appl Mater Interfaces. 2022 Apr 20;14(15):17259-17272. doi: 10.1021/acsami.2c00221. Epub 2022 Apr 7.

Abstract

Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration.

摘要

包含等离子体和催化成分的双金属纳米结构最近已成为一种有前景的方法,用于生成新型光增强纳米反应器。然而,大多数设计都集中在等离子体诱导的电荷分离上,将光生热作为副产物。这项工作提出了一种基于金 - 钯纳米棒的光反应器,其具有优化的光热转换,旨在有效利用光生热来提高钯催化反应的速率。哑铃形金纳米棒通过使用二元表面活性剂的种子介导生长法制备。利用zeta电位作为指示纳米棒表面残留表面活性剂的新合成参数,钯簇选择性地生长在金纳米棒的尖端。金 - 钯纳米棒的光热转换通过一层薄薄的聚多巴胺(PDA)或二氧化钛得到改善。结果,在相同光强度和颗粒密度下,与裸金棒相比,分散体的温度增量可提高60%。然后使用4 - 硝基苯酚的还原作为模型反应来测试涂覆颗粒的催化性能。在光照下,PDA涂覆的金 - 钯纳米棒表现出改善的催化活性,反应速率提高了3倍。活化能分析证实光热效应是加速反应的主要机制。因此,增加的光热加热是反应加速的原因。有趣的是,相同的分析表明,与暗加热相比,光照下颗粒的反应速率大约高10%,这可能意味着颗粒表面局部热梯度的关键作用。最后,涂层厚度被确定为决定光热转换效率和反应加速的关键参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验