Liu Hongqin, Tan Pengfei, Liu Yong, Zhai Huanhuan, Du Wenna, Liu Xinfeng, Pan Jun
State Key Laboratory for Powder Metallurgy, Central South University, 410083, Changsha, PR China.
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
J Colloid Interface Sci. 2022 Aug;619:246-256. doi: 10.1016/j.jcis.2022.03.080. Epub 2022 Mar 28.
The interfacial charge dynamics was crucial for semiconductor heterostructure photocatalysis. Through the rational design of the heterostructure interface, heterojunction expressed variable recombination and migration dynamics for excited carriers. Herein, followed by a typical chemical bath strategy with the hexagonal cadmium sulfide (CdS) overlapped on the exfoliated molybdenum disulfide (MoS) film, we developed a cadmium sulfide/molybdenum disulfide (CdS-MoS) nano-heterojunction and investigated the interfacial charge dynamics for photocatalytic hydrogen evolution. Photoelectron spectroscopy detected an energetic offset between CdS and MoS, revealing the formation of an interfacial electric field with efficient charges separation. Through transient absorption spectra, we demonstrated the type-II contact at the CdS-MoS interface. Driven by the electric field, the excited carriers separated and rapidly migrated to sub-band defects of CdS within the first 500 fs. The carriers-restricted defects provided catalytic active sites, endowing CdS-MoS a highly efficient photocatalytic capability. Consequentially, the CdS-MoS achieved an enhanced hydrogen evolution rate of 2.3 mmol·g·h with significantly stronger photocurrent density. This work gave an insight to the channel of interfacial separation and migration for excited carriers, which could contribute to the interfacial engineering of advanced heterojunction photocatalysts.
界面电荷动力学对于半导体异质结构光催化至关重要。通过合理设计异质结构界面,异质结表现出激发载流子的可变复合和迁移动力学。在此,我们采用典型的化学浴策略,使六方硫化镉(CdS)覆盖在剥离的二硫化钼(MoS)薄膜上,制备了硫化镉/二硫化钼(CdS-MoS)纳米异质结,并研究了光催化析氢的界面电荷动力学。光电子能谱检测到CdS和MoS之间的能量偏移,揭示了具有有效电荷分离的界面电场的形成。通过瞬态吸收光谱,我们证明了CdS-MoS界面处的II型接触。在电场驱动下,激发载流子在前500飞秒内分离并迅速迁移到CdS的子带缺陷处。载流子受限缺陷提供了催化活性位点,赋予CdS-MoS高效的光催化能力。因此,CdS-MoS实现了2.3 mmol·g·h的析氢速率增强,光电流密度显著更强。这项工作为激发载流子的界面分离和迁移通道提供了见解,这有助于先进异质结光催化剂的界面工程。