Suppr超能文献

基于真实世界数据的口咽癌总生存预后模型的建立:PRO.M.E.THE.O.

Development of a prognostic model of overall survival in oropharyngeal cancer from real-world data: PRO.M.E.THE.O.

机构信息

Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.

Department of Radiation Oncology, Azienda-Ospedaliero-Universitaria Careggi, University of Florence, Italy.

出版信息

Acta Otorhinolaryngol Ital. 2022 Jun;42(3):205-214. doi: 10.14639/0392-100X-N1672. Epub 2022 Apr 8.

Abstract

OBJECTIVE

The PRO.M.E.THE.O. study (PredictiOn Models in Ent cancer for anti-EGFR based THErapy Optimization) aimed to develop a predictive model (PM) of overall survival (OS) for patients with locally advanced oropharyngeal cancer (LAOC) treated with radiotherapy (RT) and cetuximab (Cet) from an Italian dataset.

METHODS

We enrolled patients with LAOC from 6 centres treated with RT-Cet. Clinical and treatment variables were collected. Patients were randomly divided into training (TS) (80%) and validation (VS) (20%) sets. A binary logistic regression model was used on the TS with stepwise feature selection and then on VS. Timepoints of 2, 3 and 5 years were considered. The area under the curve (AUC) of receiver operating characteristic of 2, 3 and 5 year and confusion matrix statistics at 5-threshold were used as performance criteria.

RESULTS

Overall, 218 patients were enrolled and 174 (79.8%) were analysed. Age at diagnosis, gender, ECOG performance, clinical stage, dose to high-risk volume, overall treatment time and day of RT interruption were considered in the final PMs. The PMs were developed and represented by nomograms with AUC of 0.75, 0.73 and 0.73 for TS and 0.713, 0.713, 0.775 for VS at 2, 3 and 5 years, respectively.

CONCLUSIONS

PRO.M.E.THE.O. allows the creation of a PM for OS in patients with LAOC treated with RT-Cet.

摘要

目的

PRO.M.E.THE.O. 研究(预测模型在晚期或局部区域口咽癌中用于基于抗 EGFR 的治疗优化)旨在从意大利数据集开发一种预测模型(PM),用于预测接受放疗(RT)和西妥昔单抗(Cet)治疗的局部晚期口咽癌(LAOC)患者的总生存期(OS)。

方法

我们从 6 个中心招募了接受 RT-Cet 治疗的 LAOC 患者。收集了临床和治疗变量。患者被随机分为训练集(TS)(80%)和验证集(VS)(20%)。在 TS 上使用二元逻辑回归模型进行逐步特征选择,然后在 VS 上进行。考虑了 2、3 和 5 年的时间点。作为性能标准,使用了 2、3 和 5 年的接收者操作特征曲线下面积(AUC)和 5 个阈值的混淆矩阵统计数据。

结果

共纳入 218 例患者,其中 174 例(79.8%)进行了分析。诊断时的年龄、性别、ECOG 表现、临床分期、高危体积剂量、总治疗时间和 RT 中断天数均纳入最终 PM 中。PM 以列线图的形式呈现,在 TS 中,2、3 和 5 年的 AUC 分别为 0.75、0.73 和 0.73,在 VS 中,2、3 和 5 年的 AUC 分别为 0.713、0.713 和 0.775。

结论

PRO.M.E.THE.O. 允许为接受 RT-Cet 治疗的 LAOC 患者创建 OS 的 PM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f625/9330744/f19a92d07ae4/aoi-2022-03-205-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验