Suppr超能文献

基于熵特征的阈下情绪分类研究

A Study of Subliminal Emotion Classification Based on Entropy Features.

作者信息

Shi Yanjing, Zheng Xiangwei, Zhang Min, Yan Xiaoyan, Li Tiantian, Yu Xiaomei

机构信息

School of Information Science and Engineering, Shandong Normal University, Jinan, China.

Network Information Center, Shandong University of Political Science and Law, Jinan, China.

出版信息

Front Psychol. 2022 Mar 25;13:781448. doi: 10.3389/fpsyg.2022.781448. eCollection 2022.

Abstract

Electroencephalogram (EEG) has been widely utilized in emotion recognition. Psychologists have found that emotions can be divided into conscious emotion and unconscious emotion. In this article, we explore to classify subliminal emotions (happiness and anger) with EEG signals elicited by subliminal face stimulation, that is to select appropriate features to classify subliminal emotions. First, multi-scale sample entropy (MSpEn), wavelet packet energy ( ), and wavelet packet entropy (WpEn) of EEG signals are extracted. Then, these features are fed into the decision tree and improved random forest, respectively. The classification accuracy with and WpEn is higher than MSpEn, which shows that and WpEn can be used as effective features to classify subliminal emotions. We compared the classification results of different features combined with the decision tree algorithm and the improved random forest algorithm. The experimental results indicate that the improved random forest algorithm attains the best classification accuracy for subliminal emotions. Finally, subliminal emotions and physiological proof of subliminal affective priming effect are discussed.

摘要

脑电图(EEG)已被广泛应用于情绪识别。心理学家发现,情绪可分为有意识情绪和无意识情绪。在本文中,我们探索利用阈下脸部刺激引发的脑电信号对阈下情绪(快乐和愤怒)进行分类,即选择合适的特征来对阈下情绪进行分类。首先,提取脑电信号的多尺度样本熵(MSpEn)、小波包能量( )和小波包熵(WpEn)。然后,将这些特征分别输入决策树和改进的随机森林。使用 和WpEn的分类准确率高于MSpEn,这表明 和WpEn可作为对阈下情绪进行分类的有效特征。我们比较了不同特征与决策树算法和改进的随机森林算法相结合的分类结果。实验结果表明,改进的随机森林算法对阈下情绪达到了最佳分类准确率。最后,讨论了阈下情绪和阈下情感启动效应的生理学证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/670b/8989849/2d82bf55c646/fpsyg-13-781448-g0001.jpg

相似文献

1
A Study of Subliminal Emotion Classification Based on Entropy Features.
Front Psychol. 2022 Mar 25;13:781448. doi: 10.3389/fpsyg.2022.781448. eCollection 2022.
2
A novel consciousness emotion recognition method using ERP components and MMSE.
J Neural Eng. 2021 Apr 18;18(4). doi: 10.1088/1741-2552/abea62.
3
Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification.
J Med Syst. 2019 Dec 21;44(2):39. doi: 10.1007/s10916-019-1517-9.
4
Classification of Emotional States Using EEG Signals and Wavelet Packet Transform Features.
Stud Health Technol Inform. 2022 May 25;294:943-944. doi: 10.3233/SHTI220632.
5
Multi-Feature Input Deep Forest for EEG-Based Emotion Recognition.
Front Neurorobot. 2021 Jan 11;14:617531. doi: 10.3389/fnbot.2020.617531. eCollection 2020.
6
[Research on electroencephalogram emotion recognition based on the feature fusion algorithm of auto regressive model and wavelet packet entropy].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Feb 1;34(6):831-836. doi: 10.7507/1001-5515.201610047.
7
[An improved electroencephalogram feature extraction algorithm and its application in emotion recognition].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2017 Aug 25;34(4):510-517. doi: 10.7507/1001-5515.201605066.
8
Improving the accuracy of EEG emotion recognition by combining valence lateralization and ensemble learning with tuning parameters.
Cogn Process. 2019 Nov;20(4):405-417. doi: 10.1007/s10339-019-00924-z. Epub 2019 Jul 24.
10
An approach to EEG-based emotion recognition using combined feature extraction method.
Neurosci Lett. 2016 Oct 28;633:152-157. doi: 10.1016/j.neulet.2016.09.037. Epub 2016 Sep 22.

引用本文的文献

1
The decoder design and performance comparative analysis for closed-loop brain-machine interface system.
Cogn Neurodyn. 2024 Feb;18(1):147-164. doi: 10.1007/s11571-022-09919-7. Epub 2022 Dec 23.

本文引用的文献

1
A novel consciousness emotion recognition method using ERP components and MMSE.
J Neural Eng. 2021 Apr 18;18(4). doi: 10.1088/1741-2552/abea62.
2
EEG-Based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1645-1666. doi: 10.1109/TCBB.2021.3052811. Epub 2021 Oct 7.
3
Deep Learning Classification of Neuro-Emotional Phase Domain Complexity Levels Induced by Affective Video Film Clips.
IEEE J Biomed Health Inform. 2020 Jun;24(6):1695-1702. doi: 10.1109/JBHI.2019.2959843. Epub 2019 Dec 16.
5
Improved Random Forest for Classification.
IEEE Trans Image Process. 2018 Aug;27(8):4012-4024. doi: 10.1109/TIP.2018.2834830. Epub 2018 May 10.
6
Support vector machines using EEG features of cross-frequency coupling can predict treatment outcome in Mecp2-deficient mice.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:5606-9. doi: 10.1109/EMBC.2015.7319663.
7
The subliminal affective priming effects of faces displaying various levels of arousal: an ERP study.
Neurosci Lett. 2014 Nov 7;583:148-53. doi: 10.1016/j.neulet.2014.09.027. Epub 2014 Sep 26.
8
Enhanced subliminal emotional responses to dynamic facial expressions.
Front Psychol. 2014 Sep 9;5:994. doi: 10.3389/fpsyg.2014.00994. eCollection 2014.
10
Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals.
Neuroimage. 2014 Nov 15;102 Pt 1:162-72. doi: 10.1016/j.neuroimage.2013.11.007. Epub 2013 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验