Suppr超能文献

基于蛋白质组学的机器学习分析表明,糖原磷酸化酶脑型(PYGB)是一种新型免疫组化生物标志物,可用于鉴别内翻性尿路上皮乳头状瘤与具有内翻性生长的低级别乳头状尿路上皮癌。

Proteomic-Based Machine Learning Analysis Reveals PYGB as a Novel Immunohistochemical Biomarker to Distinguish Inverted Urothelial Papilloma From Low-Grade Papillary Urothelial Carcinoma With Inverted Growth.

作者信息

Jung Minsun, Lee Cheol, Han Dohyun, Kim Kwangsoo, Yang Sunah, Nikas Ilias P, Moon Kyung Chul, Kim Hyeyoon, Song Min Ji, Kim Bohyun, Lee Hyebin, Ryu Han Suk

机构信息

Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.

Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.

出版信息

Front Oncol. 2022 Mar 24;12:841398. doi: 10.3389/fonc.2022.841398. eCollection 2022.

Abstract

BACKGROUND

The molecular biology of inverted urothelial papilloma (IUP) as a precursor disease of urothelial carcinoma is poorly understood. Furthermore, the overlapping histology between IUP and papillary urothelial carcinoma (PUC) with inverted growth is a diagnostic pitfall leading to frequent misdiagnoses.

METHODS

To identify the oncologic significance of IUP and discover a novel biomarker for its diagnosis, we employed mass spectrometry-based proteomic analysis of IUP, PUC, and normal urothelium (NU). Machine learning analysis shortlisted candidate proteins, while subsequent immunohistochemical validation was performed in an independent sample cohort.

RESULTS

From the overall proteomic landscape, we found divergent 'NU-like' (low-risk) and 'PUC-like' (high-risk) signatures in IUP. The latter were characterized by altered metabolism, biosynthesis, and cell-cell interaction functions, indicating oncologic significance. Further machine learning-based analysis revealed SERPINH1, PKP2, and PYGB as potential diagnostic biomarkers discriminating IUP from PUC. The immunohistochemical validation confirmed PYGB as a specific biomarker to distinguish between IUP and PUC with inverted growth.

CONCLUSION

In conclusion, we suggest PYGB as a promising immunohistochemical marker for IUP diagnosis in routine practice.

摘要

背景

作为尿路上皮癌前驱疾病的内翻性尿路上皮乳头瘤(IUP)的分子生物学机制尚不清楚。此外,IUP与具有内翻性生长的乳头状尿路上皮癌(PUC)之间组织学表现重叠,这是一个诊断陷阱,常导致误诊。

方法

为了确定IUP的肿瘤学意义并发现一种用于其诊断的新型生物标志物,我们对IUP、PUC和正常尿路上皮(NU)进行了基于质谱的蛋白质组学分析。机器学习分析筛选出候选蛋白质,随后在一个独立的样本队列中进行免疫组化验证。

结果

从整体蛋白质组图谱来看,我们在IUP中发现了不同的“NU样”(低风险)和“PUC样”(高风险)特征。后者的特征是代谢、生物合成和细胞间相互作用功能改变,表明具有肿瘤学意义。进一步基于机器学习的分析显示,丝氨酸蛋白酶抑制剂H1(SERPINH1)、桥粒斑蛋白2(PKP2)和糖原磷酸化酶(PYGB)是区分IUP与PUC的潜在诊断生物标志物。免疫组化验证证实PYGB是区分IUP和具有内翻性生长的PUC的特异性生物标志物。

结论

总之,我们建议PYGB作为一种在常规实践中用于IUP诊断的有前景的免疫组化标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce5/8987228/45a3d1137364/fonc-12-841398-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验