Suppr超能文献

分布式目标探测中的未知干扰

Distributed Target Detection in Unknown Interference.

机构信息

The Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.

The School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China.

出版信息

Sensors (Basel). 2022 Mar 22;22(7):2430. doi: 10.3390/s22072430.

Abstract

Interference can degrade the detection performance of a radar system. To overcome the difficulty of target detection in unknown interference, in this paper we model the interference belonging to a subspace orthogonal to the signal subspace. We design three effective detectors for distributed target detection in unknown interference by adopting the criteria of the generalized likelihood ratio test (GLRT), the Rao test, and the Wald test. At the stage of performance evaluation, we illustrate the detection performance of the proposed detectors in the presence of completely unknown interference (not constrained to lie in the above subspace). Numerical examples indicate that the proposed GLRT and Wald test can provide better detection performance than the existing detectors.

摘要

干扰会降低雷达系统的检测性能。为了克服未知干扰下目标检测的困难,本文对与信号子空间正交的子空间中的干扰进行建模。采用广义似然比检验(GLRT)、 Rao 检验和 Wald 检验准则,设计了三种有效的分布式目标检测在未知干扰下的有效检测器。在性能评估阶段,我们说明了在完全未知干扰(不限于位于上述子空间)存在的情况下,所提出的检测器的检测性能。数值示例表明,所提出的 GLRT 和 Wald 检验可以比现有检测器提供更好的检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db3/9002535/2dc35a183494/sensors-22-02430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验